
Deep Inference and Symmetry
in Classical Proofs

Dissertation zur Erlangung des akademischen Grades
Doktor rerum naturalium

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Kai Brünnler

geboren am 28. Mai 1975 in Karl-Marx-Stadt

Betreuer: Dr. Alessio Guglielmi

Gutachter:

Prof. Dr. rer. nat. habil. Steffen Hölldobler, Technische Universität Dresden
Prof. Dr. rer. nat. habil. Horst Reichel, Technische Universität Dresden
Prof. Dr. Dale Miller, INRIA Futurs und École Polytechnique

Tag der Verteidigung: 22. September 2003

Revised version. Bern, March 2004.

Abstract

In this thesis we see deductive systems for classical propositional and predi-
cate logic which use deep inference, i.e. inference rules apply arbitrarily deep
inside formulas, and a certain symmetry, which provides an involution on
derivations. Like sequent systems, they have a cut rule which is admissi-
ble. Unlike sequent systems, they enjoy various new interesting properties.
Not only the identity axiom, but also cut, weakening and even contraction
are reducible to atomic form. This leads to inference rules that are local,
meaning that the effort of applying them is bounded, and finitely generating,
meaning that, given a conclusion, there is only a finite number of premises
to choose from. The systems also enjoy new normal forms for derivations
and, in the propositional case, a cut elimination procedure that is drastically
simpler than the ones for sequent systems.

iii

iv

Acknowledgements

Alessio Guglielmi introduced me to proof theory. He deeply influenced my
thoughts on the subject. His advice and support during the last years have
been invaluable.

I also benefited from discussions with Paola Bruscoli, Steffen Hölldobler,
Claus Jürgensen, Ozan Kahramanoğulları, Michel Parigot, Horst Reichel,
Charles Stewart, Lutz Straßburger and Alwen Fernanto Tiu.

Außerdem danke ich Axel, Sebastian, Anni, Uli und Carsten, sowie Anton,
Sylvia, Thomas, Glen, Lola, Nils, Heidi, Ronald, Micha, Mischa, Katya, Ri-
carda, Anne, Selina, Matti, Nicole, Jasper, Sheila, Holger, Juve und Roland.
Ihr hattet alle auf die eine oder andere Weise einen positiven Einfluß auf
diese Arbeit.

This work has been accomplished while I was supported by the DFG Gra-
duiertenkolleg ‘Spezifikation diskreter Prozesse und Prozeßsysteme durch
operationelle Modelle und Logiken’.

v

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Propositional Logic 7

2.1 Basic Definitions . 7

2.2 A Deep Symmetric System 11

2.3 Correspondence to the Sequent Calculus 14

2.4 Cut Admissibility . 21

3 Predicate Logic 25

3.1 Basic Definitions . 25

3.2 A Deep Symmetric System 27

3.3 Correspondence to the Sequent Calculus 29

3.4 Cut Admissibility . 32

4 Locality 35

4.1 Propositional Logic . 36

4.1.1 Reducing Rules to Atomic Form 36

4.1.2 A Local System for Propositional Logic 39

4.2 Predicate Logic . 42

4.2.1 Reducing Rules to Atomic Form 42

4.2.2 A Local System for Predicate Logic 43

4.3 Locality and the Sequent Calculus 45

vii

5 Finite Choice 47

5.1 Propositional Logic . 48

5.1.1 Eliminating Infinite Choice in Inference Rules 48

5.1.2 A Finitely Generating System for Propositional Logic 50

5.2 Predicate Logic . 51

5.2.1 Eliminating Infinite Choice in Inference Rules 51

5.2.2 A Finitely Generating System for Predicate Logic . . 55

6 Cut Elimination 57

6.1 Motivation . 57

6.2 Cut Elimination in Sequent Calculus and Natural Deduction 58

6.3 Cut Elimination in the Calculus of Structures 59

6.4 The Cut Elimination Procedure 60

7 Normal Forms 65

7.1 Permutation of Rules . 65

7.2 Separating Identity and Cut 66

7.3 Separating Contraction . 68

7.4 Separating Weakening . 70

7.5 Separating all Atomic Rules 72

7.6 Predicate Logic . 73

7.7 Decomposition and the Sequent Calculus 75

7.8 Interpolation . 76

8 Conclusion 81

Bibliography 87

Index 91

viii

Chapter 1

Introduction

The central idea of proof theory is cut elimination. Let us take a close look
at the cut rule in the sequent calculus [16], in its one-sided version [34, 44]:

� Φ, A � Ψ, Ā
Cut � Φ,Ψ

.

When seen bottom-up, it introduces an arbitrary formula A together with
its negation Ā. Another rule that introduces an arbitrary formula A and its
negation Ā, but this time when seen top-down, is the identity axiom

Ax � A, Ā
.

Clearly, the two rules are intimately related. However, their duality is ob-
scured by the fact that a certain top-down symmetry is inherently broken
in the sequent calculus: derivations are trees, and trees are top-down asym-
metric.

To reveal the duality between the two rules, let us now restore this symmetry.
The tree-shape of derivations in the sequent calculus is of course due to the
presence of two-premise inference rules. Consider for example the R∧-rule

� Φ, A � Ψ, B
R∧ � Φ,Ψ, A ∧ B

,

in which there is an asymmetry between premise and conclusion: two pre-
mises, but just one conclusion. Or, to put it differently: one connective in
the conclusion, no connective between the premises.

This asymmetry can be repaired. We know that the comma in a sequent
corresponds to disjunction and that the branching in the tree corresponds

1

2 CHAPTER 1. INTRODUCTION

to conjunction, so we write the above rule as follows:

� (Φ ∨ A) ∧ (Ψ ∨ B)

� Φ ∨ Ψ ∨ (A ∧ B)
,

thereby identifying the ‘logical’ or ‘object’ level (the connectives in the for-
mula) with the ‘structural’ or ‘meta’ level (the comma in a sequent and the
branching of the proof tree).

Identifying the two levels of the sequent calculus in this way would render
the system incomplete because one purpose of the tree-shape of derivations
is to allow the inference rules to access subformulas. Consider the derivation

. . .

� Φ, A � Ψ, B
R∧ � Φ,Ψ, A ∧ B

� F{A ∧ B}

,

where the endsequent contains a formula that has a proper subformula A∧
B. Seen bottom-up, the reason why the R∧-rule can eventually be applied
to A ∧ B is that the rules in the derivation below decompose the context
F{ } and distribute its contents among the leaves of the derivation. Having
dropped the tree-shape and the distinction between logical and structural
level, we need to restore the ability of accessing subformulas. This can be
done directly: we use deep inference, meaning that we allow inference rules
to apply anywhere deep inside a formula, not only at the main connective.
As usual in the one-sided sequent calculus, negation only occurs on atoms,
so this is sound because implication is closed under disjunction, conjunction
and quantification.

The identity axiom and the cut rule can now take the following form:

F{true}
identity

F{A ∨ Ā}
F{A ∧ Ā}

cut
F{false} ,

which makes precise the duality between the two: one can be obtained from
the other by exchanging premise and conclusion and negating them. We see
that this is the notion of duality well known under the name contrapositive.

We can now observe symmetry, meaning that all inference rules come in
pairs of two dual rules, like identity and cut. This duality of inference rules
extends to derivations: a derivation is dualised by negating everything and
flipping it upside-down.

The calculus of structures by Guglielmi [22, 19] is a formalism which employs
deep inference and symmetry. In contrast to the sequent calculus it allows us

3

to observe the duality between cut and identity. The original purpose of this
formalism was to express a logical system with a self-dual non-commutative
connective resembling sequential composition in process algebras [22, 24, 25,
9]. Such a system cannot be expressed in the sequent calculus, as was shown
by Tiu [43]. Then the calculus of structures turned out to yield systems
with interesting properties also for existing logics. It has been employed by
Straßburger to solve the problem of the non-local behaviour of the promotion
rule in linear logic [42] and to give a local system for full linear logic [41].
Stewart and Stouppa give a collection of systems for modal logics which are
simpler and more systematic than the corresponding collection of sequent
systems [39]. Di Gianantonio gives a system for Yetter’s cyclic linear logic in
[12] which avoids the cycling rule. Classical logic in the calculus of structures
is the subject of this thesis.

The calculus of structures is not alone in using deep inference. In [35, 36]
Schütte defines inference rules that work deeply inside a formula on ‘positive
and negative parts of a formula’. These notions are related to the notions of
positive and negative subformula, but they are different. Schütte suggests to
see them as a generalisation of Gentzen’s notions of antecedent and succedent
and notes the fact that this generalisation removes the need for explicitly
adding structural rules. Another system that uses deep inference is one by
Pym for the substructural logic BI [31].

Top-down symmetry, on the other hand, seems to be a unique feature of
the calculus of structures. At first sight, proof nets [18] appear to have a
similar symmetry: in particular the axiom link and the cut link are dual.
However, the ways in which they are used are not symmetric: the underlying
structure of a proof net is made by trees and thus asymmetric; there is no
easy involution on proof nets as there is on derivations in the calculus of
structures.

The formalism of the rules we have just considered, the one-sided or Gentzen-
Schütte sequent calculus, is symmetric in the sense that the De Morgan du-
ality is built into the formulas in order to save half of the inference rules.
For that reason it is also called Gentzen-symmetric. One could say that
the symmetry in the calculus of structures is related, but it reaches much
further: the De Morgan duality naturally extends from connectives to infer-
ence rules and thus from formulas to derivations. In the sequent calculus,
no matter whether Gentzen-symmetric or not, this symmetry is inherently
broken: derivations are trees, and trees are asymmetric.

In this thesis we will see that symmetry and deep inference, which so far have
only been motivated by aesthetic considerations, allow us to develop a proof
theory for classical logic much in the same way as in the sequent calculus
and also yield new proof-theoretical properties that cannot be observed in
the sequent calculus.

4 CHAPTER 1. INTRODUCTION

Many of the motivations for this work come from computer science. In fact,
there is a fruitful relationship between proof theory and computer science.
The most obvious link between the two is in the field of mechanised theorem
proving: the common interest in formalising logical statements, inferences
and proofs. However, the reasons for this interest differ. While in mecha-
nised theorem proving the interest is mainly in efficient algorithms for finding
proofs, proof theory studies the properties of proofs in a much more general
way. Still, fundamental proof-theoretic results like Herbrand’s Theorem [26]
and related work have been foundational for mechanised theorem proving.

More interesting (but less obvious) links between proof theory and com-
puter science are in the field of declarative programming languages. Central
proof theoretic methods are connected to functional programming and to
logic programming. In the paradigm of proof normalisation as computa-
tion, proofs correspond to functional programs and the normalisation of
proofs corresponds to the evaluation of functional programs. This paradigm
and its relevance for computer science is explained in [46]. In the paradigm
of proof search as computation, searching for a proof corresponds to the
execution of a logic program and a proof thus corresponds to the trace of a
successful execution. The prime example of a logic programming language
is Prolog [27].

By the two paradigms mentioned, properties of proofs correspond to prop-
erties of functional programs and to properties of logic programs. Of course,
the correspondence of notions from proof theory to notions studied in com-
puter science is by itself not so interesting to the computer scientist. It
becomes interesting when techniques and results from proof theory can be
transferred via this correspondence and can be applied in computer science.
An example of the application of proof theoretic techniques in the realm of
proof normalisation as computation is the proof of strong normalisation of
the polymorphic λ-calculus by Girard [17], which is foundational for typed
functional programming languages. An example of the application of proof
theoretic results in the realm of proof search as computation is the program-
ming language λ-Prolog [29, 28], which has several advantages over Prolog.

Summary of Results

There are four main results in this thesis:

• Deep symmetric systems for classical logic. In Chapter 2 and Chap-
ter 3 we will see systems for propositional and predicate logic in the cal-
culus of structures. Soundness and completeness are shown by trans-
lation to the sequent calculus. The inference rules of these systems
have a finer granularity than the ones of the sequent calculus and the

5

way of composing them is more general than in the sequent calculus.
For these reasons, cut admissibility for these systems immediately fol-
lows from the given translations and cut admissibility of the sequent
systems. The fact that this crucial property is not lost in moving from
sequent systems to systems in the calculus of structures suggests to
develop a proof theory in the calculus of structures in the same way
as in sequent systems.

• Locality and finite choice. By easy modification of these systems we
then obtain, in Chapter 4 and Chapter 5, systems whose inference
rules are:

– local, meaning that the application of an inference rule only affects
a bounded portion of the formula it is applied to, and

– finitely generating, meaning that, given the conclusion of an in-
ference rule, there is only a finite number of premises to choose
from.

Locality implies a bounded computational cost of applying an infer-
ence rule and seems useful for distributed implementation. Locality is
provably impossible in the sequent calculus. Finite choice can of course
be achieved in the sequent calculus—through cut admissibility. In the
calculus of structures it can be achieved with much simpler means.

• Cut elimination. The symmetry of the calculus of structures allows to
reduce the cut to atomic form without having to go through cut elim-
ination. In Chapter 6 we will see that this in turn allows for a very
simple cut elimination procedure for propositional logic. In contrast to
cut elimination procedures for the sequent calculus it involves neither
permuting up the cut rule nor induction on the cut-rank. The atomic-
ity of the cut rule allows for plugging proofs, similarly to what one can
do in natural deduction. This suggests a computational interpretation
along the lines of natural deduction.

• Normal forms. In Chapter 7 we will see new normal forms for deriva-
tions which divide derivations into distinct phases in a natural way. In
some of them, these phases use rules from disjoint subsystems, which
provides certain kinds of modularity. Most of these normal forms are
provably impossible in the sequent calculus. They are available in the
calculus of structures because there is more freedom in applying infer-
ence rules and consequently there are more permutations of rules to be
observed. For the propositional case, one of the normal forms stands
out in generalising both: cut elimination and Craig interpolation.

These results sustain the claim that the concepts of deep inference and top-
down symmetry allow for a more refined combinatorial analysis of proofs

6 CHAPTER 1. INTRODUCTION

than what is possible in the sequent calculus, while at the same time retain-
ing the good properties of the sequent calculus, in particular cut admissibil-
ity.

Many results presented in this thesis have already appeared elsewhere, the
local system for propositional logic in [8], the local system for predicate
logic and the normal forms (but not interpolation) in [3], the impossibility
of certain normal forms in the sequent calculus in [6], the finitely generating
system in [7] and the cut elimination procedure in [4].

This thesis can be read as shown in Figure 1.1. Below the title of a chapter
are the names of the systems introduced in this chapter. Readers who are
just interested in propositional logic can skip Chapter 3 and the subsequent
sections on predicate logic.

2 Propositional Logic

SKSg, KSg

3 Predicate Logic

SKSgq, KSgq

4 Locality

SKS, KS, SKSq, KSq

5 Finite Choice

FKS, FKSq
5 Cut Elimination 7 Normal Forms

8 Conclusion

Figure 1.1: Chapter overview

Chapter 2

Propositional Logic

In this chapter we see a deductive system for classical propositional logic
which follows the tradition of sequent systems, in particular there is a cut
rule and its admissibility is shown. In contrast to sequent systems, its rules
apply deep inside formulas and there is no branching in derivations. This
allows to observe a vertical symmetry that can not be observed in the sequent
calculus.

The chapter is structured as follows: after some basic definitions I present
system SKSg, a set of inference rules for classical propositional logic which is
closed under a notion of duality. I then translate derivations of a Gentzen-
Schütte sequent system into this system, and vice versa. This establishes
soundness and completeness with respect to classical propositional logic as
well as cut admissibility.

2.1 Basic Definitions

Definition 2.1.1. Propositional variables v and their negations v̄ are atoms.
Atoms are denoted by a, b, The formulas of the language KS are
generated by

S ::= f | t | a | [S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | S̄ ,

where f and t are the units false and true, [S1, . . . , Sh] is a disjunction and
(S1, . . . , Sh) is a conjunction. S̄ is the negation of the formula S. Formulas
are denoted by S, P , Q, R, T , U , V and W . Formula contexts, denoted by
S{ }, are formulas with one occurrence of { }, the empty context or hole,
that does not appear in the scope of a negation. S{R} denotes the formula
obtained by filling the hole in S{ } with R. We drop the curly braces when
they are redundant: for example, S [R,T] is short for S{[R,T]}. A formula

7

8 CHAPTER 2. PROPOSITIONAL LOGIC

Associativity

[�R, [�T], �U] = [�R, �T , �U]

(�R, (�T), �U) = (�R, �T , �U)

Units

(f, f) = f [f, R] = R

[t, t] = t (t, R) = R

Context Closure

if R = T then
S{R} = S{T}

R̄ = T̄

Commutativity

[R,T] = [T,R]

(R,T) = (T,R)

Negation

f = t

t = f

[R,T] = (R̄, T̄)

(R,T) = [R̄, T̄]

¯̄R = R

Figure 2.1: Syntactic equivalence of formulas

R is a subformula of a formula T if there is a context S{ } such that S{R} is
T . Formulas are (syntactically) equivalent modulo the smallest equivalence
relation induced by the equations shown in Figure 2.1. There, �R, �T and �U
are finite sequences of formulas, �T is non-empty. Formulas are in negation
normal form if negation occurs only on propositional variables.

For each formula there is an equivalent one in negation normal form. In the
following, unless stated otherwise, I will assume formulas to be in negation
normal form. Likewise, for each formula there is an equivalent one in which
disjunction as well as conjunction only occur in their binary form. I will use
this fact in induction arguments without explicitly mentioning it.

Example 2.1.2. The formulas [a, b, c] and (ā, (b̄, c̄)) are equivalent: the first
is not in negation normal form, the second instead is. Contrary to the first,
in the second formula disjunction and conjunction only occur in their binary
form.

Definition 2.1.3. The letters denoting formulas, i.e. S,P,Q, are schematic
formulas. Likewise, S{ } is a schematic context. An inference rule is a
scheme written

V
ρ

U
,

where ρ is the name of the rule, V is its premise and U is its conclusion.
Both U and V are formulas that each may contain schematic formulas and
schematic contexts. If neither U nor V contain a schematic context, then

2.1. BASIC DEFINITIONS 9

the inference rule is called shallow, otherwise it is called deep. An instance
of an inference rule is the inference rule in which each schematic context is
replaced by a context and each schematic formula is replaced by a formula.
If a deep inference rule is of the shape

S{T}
π

S{R} ,

where S{ } is a schematic context and R and T are formulas that may
contain schematic formulas and contexts, then in an instance of π the for-
mula taking the place of R is its redex, the formula taking the place of T
is its contractum and the context taking the place of S{ } is its context. A
(deductive) system S is a set of inference rules.

Most inference rules that we will consider have the shape of the rule π from
the previous definition. Such an inference rule can be seen as a rewrite rule
with the context made explicit. The rule π seen top-down corresponds to
a rewrite rule T → R. A shallow inference rule can be seen as a rewrite
rule that may only be applied to the whole given term, not to arbitrary
subterms.

Definition 2.1.4. A derivation ∆ in a certain deductive system is a finite
sequence of instances of inference rules in the system:

T
π

V
π′

...
ρ′

U
ρ

R

.

A derivation can consist of just one formula. The topmost formula in a
derivation is called the premise of the derivation, and the formula at the
bottom is called its conclusion.

Note that the notion of derivation is top-down symmetric, contrary to the
corresponding notion in the sequent calculus.

Notation 2.1.5. A derivation ∆ whose premise is T , whose conclusion is R,
and whose inference rules are in S is denoted by

T

R
S∆ .

10 CHAPTER 2. PROPOSITIONAL LOGIC

Deep inference allows to put derivations into a context to obtain a new
derivation. This is related to the method of adding formulas to the context
of every rule instance in a sequent calculus derivation.

Definition 2.1.6. Given a derivation ∆, the derivation S{∆} is obtained as
follows:

∆ =

T
π′

V
π ...
ρ′

U
ρ

R

S{∆} =

S{T}
π′

S{V }
π ...
ρ′

S{U}
ρ

S{R}

.

Definition 2.1.7. The equivalence rule is

T
= ,

R

where R and T are syntactically equivalent formulas. Every system im-
plicitly includes the equivalence rule. I will omit obvious instances of the
equivalence rule from derivations.

Remark 2.1.8. Other works on systems in the calculus of structures define
structures to be equivalence classes of formulas and inference rules that
work on structures instead of formulas. The use of the term ‘structure’ for
syntactic ‘sequent-like’ objects is common, cf. [1, 32]. However, this term is
rather generic and could clash with the semantic notion of ‘structure’ as used
in model theory. So instead of structures I use formulas and an equivalence
rule. Of course one can trivially move from one approach to the other.

Definition 2.1.9. A rule ρ is derivable for a system S if for every instance

of
T

ρ
R

there is a derivation
T

R
S .

The symmetry of derivations, where both premise and conclusion are arbi-
trary formulas, is broken in the notion of proof :

Definition 2.1.10. A proof is a derivation whose premise is the unit t. A
proof Π of R in system S is denoted by

R

SΠ .

2.2. A DEEP SYMMETRIC SYSTEM 11

2.2 A Deep Symmetric System

In this section we see a system for classical propositional logic which shows
the following notion of duality, which is known as contrapositive:

Definition 2.2.1. The dual of an inference rule is obtained by exchanging
premise and conclusion and replacing each connective by its De Morgan
dual. For example

S{t}
i↓

S [R, R̄]
is dual to

S(R, R̄)
i↑

S{f} ,

where the rule i↓ is called identity and the rule i↑ is called cut.

The rules i↓ and i↑ respectively correspond to the identity axiom and the
cut rule in the sequent calculus, as we will see shortly.

Definition 2.2.2. A system of inference rules is called symmetric if for each
of its rules it also contains the dual rule.

The symmetric system for propositional classical logic is shown in Figure 2.2.
It is called system SKSg, where the first S stands for ‘symmetric’, K stands
for ‘klassisch’ as in Gentzen’s LK and the second S says that it is a system
in the calculus of structures. Small letters are appended to the name of a
system to denote variants. In this case, the g stands for ‘general’, meaning
that rules are not restricted to atoms: they can be applied to arbitrary
formulas. We will see in the next section that this system is sound and
complete for classical propositional logic.

The rules s, w↓ and c↓ are called respectively switch, weakening and con-
traction. Their dual rules carry the same name prefixed with a ‘co-’, so e.g.
w↑ is called co-weakening. Rules i↓, w↓, c↓ are called down-rules and their
duals are called up-rules. The dual of the switch rule is the switch rule itself:
it is self-dual.

I now try to give an idea on how the familiar rules of the sequent calculus
correspond to the rules of SKSg. For the sake of simplicity I consider the
rules of the sequent calculus in isolation, i.e. not as part of a proof tree. The
full correspondence is shown in Section 2.3.

The identity axiom of the sequent calculus corresponds to the identity rule
i↓:

� A, Ā
corresponds to

t
i↓ .

[A, Ā]

12 CHAPTER 2. PROPOSITIONAL LOGIC

S{t}
i↓

S [R, R̄]

S(R, R̄)
i↑

S{f}

S([R,U], T)
s
S [(R,T), U]

S{f}
w↓

S{R}
S{R}

w↑
S{t}

S [R,R]
c↓

S{R}
S{R}

c↑
S(R,R)

Figure 2.2: System SKSg

However, i↓ can appear anywhere in a proof, not only at the top. The
cut rule of the sequent calculus corresponds to the rule i↑ followed by two
instances of the switch rule:

� Φ, A � Ψ, Ā
Cut � Φ,Ψ

corresponds to

([Φ, A], [Ψ, Ā])
s

[Φ, (A, [Ψ, Ā])]
s

[Φ,Ψ, (A, Ā)]
i↑

[Φ,Ψ, f]
=

[Φ,Ψ]

.

The multiplicative (or context-splitting) R∧ rule in the sequent calculus
corresponds to two instances of the switch rule:

� Φ, A � Ψ, B
R∧ � Φ,Ψ, A ∧ B

corresponds to

([Φ, A], [Ψ, B])
s

[Φ, (A, [Ψ, B])]
s

[Φ,Ψ, (A,B)]

.

A contraction in the sequent calculus corresponds to the c↓ rule:

� Φ, A,A
RC � Φ, A

corresponds to
[Φ, A,A]

c↓ ,
[Φ, A]

2.2. A DEEP SYMMETRIC SYSTEM 13

just as the weakening in the sequent calculus corresponds to the w↓ rule:

� Φ
RW � Φ, A

corresponds to

Φ
=

[Φ, f]
w↓ .

[Φ, A]

The c↑ and w↑ rules have no analogue in the sequent calculus. Their role is
to ensure that our system is symmetric. They are obviously sound since they
are just duals of the rules c↓ and w↓ which correspond to sequent calculus
rules.

Derivations in a symmetric system can be dualised:

Definition 2.2.3. The dual of a derivation is obtained by turning it upside-
down and replacing each rule, each connective and each atom by its dual.
For example

[(a, b̄), a]
w↑

[a, a]
c↓

a

is dual to

ā
c↑

(ā, ā)
w↓

([ā, b], ā)

.

As we will see in the next section, a formula T implies a formula R if and
only if there is a derivation from T to R. So derivations correspond to
implications. Dualising a derivation from T to R, illustrated in Figure 2.3,
yields a derivation from R̄ to T̄ , and vice versa. On the corresponding
implications this duality is known as contraposition.

T R̄

R T̄

Figure 2.3: Symmetry

The notion of proof, however, is an asymmetric one: the dual of a proof is
not a proof. Instead it is a derivation whose conclusion is the unit f. This
dual notion of proof will be called refutation.

We now see that one can easily move back and forth between a derivation
and a proof of the corresponding implication via the deduction theorem:

14 CHAPTER 2. PROPOSITIONAL LOGIC

Theorem 2.2.4 (Deduction Theorem).

There is a derivation

T

R

SKSg if and only if there is a proof
[T̄ , R]

SKSg
.

Proof. A proof Π can be obtained from a given derivation ∆ as follows:

T

R

∆ SKSg �
t

i↓
[T̄ , T]

[T̄ , R]

SKSg[T̄ ,∆]
,

and a derivation ∆ from a given proof Π as follows:

[T̄ , R]

Π SKSg �

T

(T, [T̄ , R])
s

[R, (T, T̄)]
i↑

R

(T,Π) SKSg

.

2.3 Correspondence to the Sequent Calculus

The sequent system that is most similar to system SKSg is the one-sided
system GS1p [44], also called Gentzen-Schütte system. In this section we
consider a version of GS1p with multiplicative context treatment and con-
stants � and ⊥, and we translate its derivations to derivations in SKSg
and vice versa. Translating from the sequent calculus to the calculus of
structures is straightforward, in particular, no new cuts are introduced in
the process. To translate in the other direction we have to simulate deep
inferences in the sequent calculus, which is done by using the cut rule.

One consequence of those translations is that system SKSg is sound and
complete for classical propositional logic. Another consequence is cut elimi-
nation: one can translate a proof with cuts in SKSg to a proof in GS1p+Cut,
apply cut elimination for GS1p, and translate back the resulting cut-free
proof to obtain a cut-free proof in SKSg.

2.3. CORRESPONDENCE TO THE SEQUENT CALCULUS 15

� � � Ax � A, Ā

� Φ, A � Ψ, B
R∧ � Φ,Ψ, A ∧ B

� Φ, A,B
R∨ � Φ, A ∨ B

� Φ, A,A
RC � Φ, A

� Φ
RW � Φ, A

Figure 2.4: GS1p: classical logic in Gentzen-Schütte form

Definition 2.3.1. System GS1p is the set of rules shown in Figure 2.4. The
system GS1p + Cut is GS1p together with

� Φ, A � Ψ, Ā
Cut � Φ,Ψ

.

Formulas of system GS1p are denoted by A and B. They contain negation
only on atoms and may contain the constants � and ⊥. Multisets of formulas
are denoted by Φ and Ψ. The empty multiset is denoted by ∅. In A1, . . . , Ah,
where h ≥ 0, a formula denotes the corresponding singleton multiset and
the comma denotes multiset union. Sequents, denoted by Σ, are multisets
of formulas. Derivations of system GS1p are trees denoted by ∆ or by

Σ1 · · · Σh

∆

Σ

,

where h ≥ 0, the sequents Σ1, . . . ,Σh are the premises and Σ is the con-
clusion. A leaf of a derivation is closed if is either an instance of Ax or
an instance of �. Proofs, denoted by Π, are derivations where each leaf is
closed.

16 CHAPTER 2. PROPOSITIONAL LOGIC

From Sequent Calculus to Calculus of Structures

Definition 2.3.2. The function .
S

maps formulas, multisets of formulas and
sequents of GS1p to formulas of KS:

a
S

= a ,

�
S

= t ,

⊥
S

= f ,

A ∨ B
S

= [A
S
, B

S
] ,

A ∧ B
S

= (A
S
, B

S
) ,

∅
S

= f ,

A1, . . . , AhS
= [A1

S
, . . . , AhS

] , where h > 0.

In proofs, when no confusion is possible, the subscript
S

may be dropped
to improve readability.

Theorem 2.3.3. For every derivation

Σ1 · · · Σh

Σ

in GS1p + Cut there exists

a derivation

(Σ1
S
, . . . ,ΣhS

)

Σ
S

SKSg \ {c↑,w↑} with the same number of cuts.

Proof. By structural induction on the given derivation ∆.

Base Cases

1. ∆ = Σ . Take Σ
S
.

2. ∆ = � � � . Take t .

3. ∆ = Ax � A, Ā
. Take

t
i↓

[A
S
, Ā

S
]

.

Inductive Cases

2.3. CORRESPONDENCE TO THE SEQUENT CALCULUS 17

In the case of the R∧ rule, we have a derivation

∆ =

Σ1 · · · Σk

� Φ, A

Σ′
1 · · · Σ′

l

� Ψ, B
R∧ � Φ,Ψ, A ∧ B

.

By induction hypothesis we obtain derivations

(Σ1, . . . ,Σk)

[Φ, A]

∆1 SKSg \ {c↑,w↑} and

(Σ′
1, . . . ,Σ

′
l)

[Ψ, B]

∆2 SKSg \ {c↑,w↑} .

The derivation ∆1 is put into the context ({ },Σ′
1, . . . ,Σ

′
l) to obtain ∆′

1 and
the derivation ∆2 is put into the context ([Φ, A], { }) to obtain ∆′

2:

(Σ1, . . . ,Σk,Σ′
1, . . . ,Σ

′
l)

([Φ, A],Σ′
1, . . . ,Σ

′
l)

∆′
1 SKSg \ {c↑,w↑} and

([Φ, A],Σ′
1, . . . ,Σ

′
l)

([Φ, A], [Ψ, B])

∆′
2 SKSg \ {c↑,w↑} .

The derivation in SKSg we are looking for is obtained by composing ∆′
1 and

∆′
2 and applying the switch rule twice:

(Σ1, . . . ,Σk,Σ′
1, . . . ,Σ

′
l)

([Φ, A],Σ′
1, . . . ,Σ

′
l)

∆′
1 SKSg \ {c↑,w↑}

([Φ, A], [Ψ, B])
s

[Ψ, ([Φ, A], B)]
s .

[Φ,Ψ, (A,B)]

∆′
2 SKSg \ {c↑,w↑}

The other cases are similar. The only case that requires a cut in SKSg is a
cut in GS1p.

Since proofs are special derivations, we obtain the following corollaries:

Corollary 2.3.4. If a sequent Σ has a proof in GS1p + Cut then Σ
S

has a
proof in SKSg \ {c↑,w↑}.
Corollary 2.3.5. If a sequent Σ has a proof in GS1p then Σ

S
has a proof in

SKSg \ {i↑, c↑,w↑}.

18 CHAPTER 2. PROPOSITIONAL LOGIC

From Calculus of Structures to Sequent Calculus

In the following we assume that formula of the language KS contain nega-
tion only on atoms and only conjunctions and disjunctions of exactly two
formulas.

Definition 2.3.6. The function .
G

maps formulas of SKSg to formulas of
GS1p:

a
G

= a,
t
G

= �,

f
G

= ⊥,

[R,T]
G

= R
G
∨ T

G
,

(R,T)
G

= R
G
∧ T

G
.

We need the following lemma to imitate deep inference in the sequent
calculus:

Lemma 2.3.7. For every two formulas A,B and every formula context C{ }

there exists a derivation

� A, B̄

� C{A}, C{B}
in GS1p.

Proof. By structural induction on the context C{ }. The base case in which
C{ } = { } is trivial. If C{ } = C1 ∧ C2{ }, then the derivation we are
looking for is

Ax � C1, C̄1

� A, B̄

∆

� C2{A}, C2{B}
R∧ � C1 ∧ C2{A}, C̄1, C2{B}
R∨ ,� C1 ∧ C2{A}, C̄1 ∨ C2{B}

where ∆ exists by induction hypothesis. The other case, in which C{ } =
C1 ∨ C2{ }, is similar.

Now we can translate derivations in system SKSg into derivations in the
sequent calculus:

2.3. CORRESPONDENCE TO THE SEQUENT CALCULUS 19

Theorem 2.3.8. For every derivation

Q

P

SKSg there exists a derivation

� Q
G

� P
G

in GS1p + Cut.

Proof. We construct the sequent derivation by induction on the length of
the given derivation ∆ in SKSg.

Base Case

If ∆ consists of just one formula P , then P and Q are the same. Take � P
G
.

Inductive Cases

We single out the topmost rule instance in ∆:

Q

P

∆ SKSg =

S{T}
ρ

S{R}

P

∆′ SKSg

The corresponding derivation in GS1p will be as follows:

Π

� R, T̄

∆1

� S{R}, S{T} � S{T}
Cut ,� S{R}

∆2

� P

where ∆1 exists by Lemma 2.3.7 and ∆2 exists by induction hypothesis.
The proof Π depends on the rule ρ. In the following we will see that the
proof Π exists for all the rules of SKSg.

20 CHAPTER 2. PROPOSITIONAL LOGIC

For identity and cut, i.e.

S{t}
i↓

S [U, Ū]
and

S(U, Ū)
i↑

S{f} ,

we have the following proofs:

Ax � U, Ū
R∨ � U ∨ Ū

RW � U ∨ Ū ,⊥

and

Ax � U, Ū
R∨ � Ū ∨ U

RW � ⊥, Ū ∨ U

.

In the case of the switch rule, i.e.

S([U, V], T)
s
S [(U, T), V]

,

we have

Ax � U, Ū
Ax � V, V̄

R∧ � U, Ū ∧ V̄ , V
Ax � T, T̄

R∧ � (U ∧ T), V, (Ū ∧ V̄), T̄
R∨2

� (U ∧ T) ∨ V, (Ū ∧ V̄) ∨ T̄

,

where R∨2 denotes two instances of the R∨ rule.

For contraction and its dual, i.e.

S [U,U]
c↓

S{U} and
S{U}

c↑
S(U,U)

,

we have

Ax � U, Ū
Ax � U, Ū

R∧ � U,U, Ū ∧ Ū
RC � U, Ū ∧ Ū

and

Ax � U, Ū
Ax � U, Ū

R∧ � U ∧ U, Ū , Ū
RC � U ∧ U, Ū

.

For weakening and its dual, i.e.

S{f}
w↓

S{U} and
S{U}

w↑
S{t} ,

we have

� � �
RW � U,�

and
� � �

RW � �, Ū

.

2.4. CUT ADMISSIBILITY 21

Corollary 2.3.9. If a formula S has a proof in SKSg then � S
G

has a proof
in GS1p + Cut.

Soundness and completeness of SKSg, i.e. the fact that a formula has a proof
if and only if it is valid, follows from soundness and completeness of GS1p
by Corollaries 2.3.4 and 2.3.9. By symmetry a formula has a refutation if
and only if it is unsatisfiable. Moreover, a formula T implies a formula R if
and only if there is a derivation from T to R, which follows from soundness
and completeness and the deduction theorem.

2.4 Cut Admissibility

In this section we see that if one is just interested in provability, then the
up-rules of the symmetric system SKSg, i.e. i↑, w↑ and c↑, are superfluous.
By removing them we obtain the asymmetric, cut-free system shown in
Figure 2.5, which is called system KSg.

Definition 2.4.1. A rule ρ is admissible for a system S if for every proof

S

S∪{ρ} there is a proof
S

S .

The admissibility of all the up-rules for system KSg is shown by using the
translation functions from the previous section:

Theorem 2.4.2. The rules i↑, w↑ and c↑ are admissible for system KSg.

Proof.

S

SKSg Corollary 2.3.9 GS1p
+Cut

� S
G

Cut elimination
for GS1p GS1p

� S
G

Corollary 2.3.5

S

KSg

Definition 2.4.3. Two systems S and S ′ are (weakly) equivalent if for every

proof
R

S there is a proof
R

S ′
, and vice versa.

Corollary 2.4.4. The systems SKSg and KSg are equivalent.

Definition 2.4.5. Two systems S and S ′ are strongly equivalent if for every

derivation
T

R
S there is a derivation

T

R
S ′ , and vice versa.

22 CHAPTER 2. PROPOSITIONAL LOGIC

S{t}
i↓

S [R, R̄]

S([R,T], U)
s

S [(R,U), T]

S{f}
w↓

S{R}
S [R,R]

c↓
S{R}

Figure 2.5: System KSg

Remark 2.4.6. The systems SKSg and KSg are not strongly equivalent. The
cut rule, for example, can not be derived in system KSg.

When a formula R implies a formula T then there is not necessarily a deriva-
tion from R to T in KSg, while there is one in SKSg. Therefore, I will in
general use the asymmetric, cut-free system for deriving conclusions from
the unit t, while I will use the symmetric system (i.e. the system with cut)
for deriving conclusions from arbitrary premises.

As a result of cut elimination, sequent systems fulfill the subformula prop-
erty. Our case is different, because the notions of formula and sequent are
merged. Technically, system KSg does not fulfill the subformula property,
just as system GS1p does not fulfill a ‘subsequent property’. However, seen
bottom-up, in system KSg no rule introduces new atoms. It thus satisfies
the main aspect of the subformula property: when given a conclusion of
a rule there is only a finite number of premises to choose from. In proof
search, for example, the branching of the search tree is finite.

There is also a semantic cut elimination proof for system SKSg, analogous
to the one given in [44] for system G3. The given proof with cuts is thrown
away, keeping only the information that its conclusion is valid, and a cut-
free proof is constructed from scratch. This actually gives us more than
just admissibility of the up-rules: it also yields a separation of proofs into
distinct phases.

Definition 2.4.7. A rule ρ is invertible for a system S if for each instance
V

ρ
U

there is a derivation
U

V
S .

Theorem 2.4.8.

For every proof
S

SKSg there is a proof
S′′

{i↓}

S′
{w↓}

S
{s,c↓}

.

2.4. CUT ADMISSIBILITY 23

Proof. Consider the rule distribute:

S([R,T], [R,U])
d ,

S [R, (T,U)]

which can be derived by a contraction and two switches:

S([R,T], [R,U])
s
S [R, ([R,T], U)]

s
S [R,R, (T,U)]

c↓ .
S [R, (T,U)]

Build a derivation
S′

S
{d} , by going upwards from S applying d as many times

as possible. Then S′ will be in conjunctive normal form, i.e.

S′ = ([a11, a12, . . .], [a21, a22, . . .], . . . , [an1, an2, . . .]) .

S is valid because there is a proof of it. The rule d is invertible, so S′ is also
valid. A conjunction is valid only if all its immediate subformulas are valid.
Those are disjunctions of atoms. A disjunction of atoms is valid only if it
contains an atom a together with its negation ā. Thus, more specifically,
S′ is of the following form (where we disregard the order of atoms in a
disjunction):

S′ = ([b1, b̄1, a11, a12, . . .], [b2, b̄2, a21, a22, . . .], . . . , [bn, b̄n, an1, an2, . . .]) .

Let S′′ = ([b1, b̄1], [b2, b̄2], . . . , [bn, b̄n]) .

Obviously, there is a derivation
S′′

S′
{w↓} and a proof

S′′
{i↓} .

Chapter Summary

We have seen a deductive system for classical propositional logic. Its deriva-
tions easily correspond to derivations in the one-sided sequent calculus,
which grants cut admissibility. Similarly to system G3 it admits a simple
semantic cut admissibility argument.

In contrast to sequent systems, its rules apply deep inside formulas and
there is no branching in derivations. This allowed us to observe a vertical
symmetry, the duality of derivations which consists in negating and flipping.
This symmetry can not be observed in the sequent calculus.

24 CHAPTER 2. PROPOSITIONAL LOGIC

Chapter 3

Predicate Logic

In this chapter we see a system for predicate logic. The use of deep inference
allows to design this system in such a way that each rule corresponds to an
implication from premise to conclusion, which is not true in the sequent
calculus. Also, the eigenvariable conditions in this system are local, in con-
trast to the sequent calculus, where checking the eigenvariable condition
requires checking the entire context.

This chapter is structured as the previous one: after some basic definitions
I present system SKSgq, a set of inference rules for classical predicate logic
which is closed under a notion of duality. I then translate derivations of
a Gentzen-Schütte sequent system into this system, and vice versa. This
establishes soundness and completeness with respect to classical predicate
logic as well as cut admissibility.

3.1 Basic Definitions

Definition 3.1.1. Variables are denoted by x and y. Terms are denoted by
τ and are defined as usual in first-order predicate logic. Atoms, denoted by
a, b, etc., are expressions of the form p(τ1, . . . , τn), where p is a predicate
symbol of arity n and τ1, . . . , τn are terms. The negation of an atom is again
an atom. The formulas of the language KSq are generated by the following
grammar, which is the one for the propositional case extended by existential
and universal quantifier:

S ::= f | t | a | [S, . . . , S
︸ ︷︷ ︸

>0

] | (S, . . . , S
︸ ︷︷ ︸

>0

) | S̄ | ∃xS | ∀xS .

Definition 3.1.2. Formulas are equivalent modulo the smallest equivalence
relation induced by the equations in Figure 2.1 extended by the following

25

26 CHAPTER 3. PREDICATE LOGIC

S{t}
i↓

S [R, R̄]

S(R, R̄)
i↑

S{f}

S([R,U], T)
s
S [(R,T), U]

S{∀x[R,T]}
u↓

S [∀xR,∃xT]

S(∃xR,∀xT)
u↑

S{∃x(R,T)}

S{f}
w↓

S{R}
S{R}

w↑
S{t}

S [R,R]
c↓

S{R}
S{R}

c↑
S(R,R)

S{R[x/τ]}
n↓

S{∃xR}
S{∀xR}

n↑
S{R[x/τ]}

Figure 3.1: System SKSgq

equations:

Variable Renaming
∀xR = ∀yR[x/y]

∃xR = ∃yR[x/y]
if y is not free in R

Vacuous Quantifier ∀yR = ∃yR = R if y is not free in R

Negation
∃xR = ∀xR̄

∀xR = ∃xR̄

Definition 3.1.3. The notions of formula context and subformula are defined
in the same way as in the propositional case.

3.2. A DEEP SYMMETRIC SYSTEM 27

3.2 A Deep Symmetric System

The rules of system SKSgq, a symmetric system for predicate logic, are
shown in Figure 3.1. The first and last column show the rules that deal with
quantifiers, in the middle there are the rules for the propositional fragment.
The u↓ rule corresponds to the R∀ rule in GS1, shown in Figure 3.2. Going
up, the R∀ rule removes a universal quantifier from a formula to allow other
rules to access this formula. In system SKSgq, inference rules apply deep
inside formulas, so there is no need to remove the quantifier. It suffices to
move it out of the way using the u↓ rule:

S{∀x[R,T]}
u↓

S [∀xR,∃xT]
=

S [∀xR, T]

if x is not free in T ,

and it vanishes once the proof is complete:

t
= ∀xt

.

As a result, the premise of the u↓ rule implies its conclusion, which is not
true for the R∀ rule of the sequent calculus. The R∀ rule is the only rule
in GS1 with such bad behaviour. In all the rules that I presented in the
calculus of structures the premise implies the conclusion.

The instantiation rule n↓ corresponds to R∃. As usual, the substitution
operation requires τ to be free for x in R: quantifiers in R do not capture
variables in τ . The term τ is not required to be free for x in S{R}: quantifiers
in S may capture variables in τ .

The rules u↑ and n↑ are just the duals of the two rules explained above.
They ensure that the system is symmetric.

As in the propositional case we have the deduction theorem:

Theorem 3.2.1 (Deduction Theorem).

There is a derivation

T

R

SKSgq if and only if there is a proof
[T̄ , R]

SKSgq
.

Proof. (same as in the propositional case, Theorem 2.2.4 on page 14)

28 CHAPTER 3. PREDICATE LOGIC

A proof Π can be obtained from a given derivation ∆ as follows:

T

R

∆ SKSgq �
t

i↓
[T̄ , T]

[T̄ , R]

SKSgq[T̄ ,∆]
,

and a derivation ∆ from a given proof Π as follows:

[T̄ , R]

Π SKSgq �

T

(T, [T̄ , R])
s

[R, (T, T̄)]
i↑

R

(T,Π) SKSgq

.

In the propositional case the analogue of the above theorem holds for the
sequent calculus as well and it is proved in the same way: going from left
to right by just adding the negated premise throughout the proof tree, and
going from right to left by using a cut.

Theorem 3.2.2. In system GS1p + Cut there is a derivation

� T

� R

if

and only if there is a proof

� T̄ , R

.

However, the above does not hold for predicate logic, i.e. system GS1+ Cut.
The direction from left to right fails because the premise of the R∀ rule does
not imply its conclusion. The proof for the propositional sequent system does
not scale to the sequent system for predicate logic: adding formulas to the
context of a derivation can violate the proviso of the R∀ rule. In the calculus
of structures, on the other hand, the proof for the propositional system scales
to the one for predicate logic, as witnessed above. The reason is that the
provisos for the equations of variable renaming and vacuous quantifier are
local, in the sense that they only require checking the subformula that is
being changed, while the proviso of the R∀ rule is global, in the sense that
the entire context has to be checked.

3.3. CORRESPONDENCE TO THE SEQUENT CALCULUS 29

� Φ, A[x/τ]
R∃ � Φ,∃xA

� Φ, A[x/y]
R∀ � Φ,∀xA

Proviso: y is not free in the conclusion of R∀.

Figure 3.2: Quantifier rules of GS1

3.3 Correspondence to the Sequent Calculus

We extend the translations between SKSg and GS1p to translations between
SKSgq and GS1. System GS1 is system GS1p extended by the rules shown
in Figure 3.2.

The functions .
S

and .
G

are extended in the obvious way:

∃xA
S

= ∃xA
S

∀xA
S

= ∀xA
S

and
∃xS

G
= ∃xS

G

∀xS
G

= ∀xS
G

.

From Sequent Calculus to Calculus of Structures

Theorem 3.3.1.

For every derivation

Σ1 · · · Σh

Σ

in GS1 + Cut, in which the free variables in

the premises that are introduced by R∀ instances are x1, . . . , xn, there exists

a derivation

∀x1 . . . ∀xn(Σ1S
, . . . ,ΣhS

)

Σ
S

SKSgq \ {w↑,c↑,u↑,n↑} with the same number of cuts.

Proof. The proof is an extension of the proof of Theorem 2.3.3. There are
two more inductive cases, one for R∃, which is easily translated into an n↓,
and one for R∀, which is shown here:

Σ1 · · · Σh′

� Φ, A[x/y]
R∀ � Φ,∀xA

.

30 CHAPTER 3. PREDICATE LOGIC

By induction hypothesis we have the derivation

∀x1 . . . ∀xn′(Σ1
S
, . . . ,Σh′

S
)

[Φ
S
, A[x/y]

S
]

∆ SKSgq \ {w↑,c↑,u↑,n↑} ,

from which we build

∀y∀x1 . . . ∀xn′(Σ1
S
, . . . ,Σh′

S
)

∀y [Φ
S
, A[x/y]

S
]

u↓
[∃yΦ

S
,∀yA[x/y]

S
]

=
[Φ

S
,∀yA[x/y]

S
]

=
[Φ

S
,∀xA

S
]

∀y{∆} SKSgq \ {w↑,c↑,u↑,n↑}

,

where in the lower instance of the equivalence rule y is not free in ∀xA
S

and
in the upper instance of the equivalence rule y is not free in Φ

S
: both due

to the proviso of the R∀ rule.

Since proofs are special derivations, we obtain the following corollaries:

Corollary 3.3.2. If a sequent Σ has a proof in GS1+Cut then Σ
S

has a proof
in SKSgq \ {w↑, c↑, u↑, n↑}.
Corollary 3.3.3. If a sequent Σ has a proof in GS1 then Σ

S
has a proof in

SKSgq \ {i↑,w↑, c↑, u↑, n↑} .

From Calculus of Structures to Sequent Calculus

As in the propositional case, we need the following lemma to imitate deep
inference in the sequent calculus:

Lemma 3.3.4. For every two formulas A,B and every formula context C{ }

there exists a derivation

� A, B̄

� C{A}, C{B}
in GS1.

Proof. There are two cases needed in addition to the proof of Lemma 2.3.7:
C{ } = ∃xC ′{ } and C{ } = ∀xC ′{ }. The first case is shown here, the

3.3. CORRESPONDENCE TO THE SEQUENT CALCULUS 31

second is similar:
� A, B̄

∆

� C ′{A}, C ′{B}
R∃ � ∃xC ′{A}, C ′{B}

R∀ ,� ∃xC ′{A},∀xC ′{B}
where ∆ exists by induction hypothesis.

Now we can translate derivations in system SKSgq into derivations in the
sequent calculus:

Theorem 3.3.5. For every derivation

Q

P

SKSgq there exists a derivation

� Q
G

� P
G

in GS1 + Cut.

Proof. The proof is an extension of the proof of Theorem 2.3.8 on page 18.
The base cases are the same, in the inductive cases the existence of ∆1

follows from Lemma 3.3.4. Corresponding to the rules for quantifiers, there
are four additional inductive cases. For the rules

S{∀x[R,T]}
u↓

S [∀xR,∃xT]
and

S(∃xR,∀xT)
u↑

S{∃x(R,T)}
we have the proofs

Ax � R, R̄
Ax � T, T̄

R∧ � R,T, R̄ ∧ T̄
R∃ � R,∃xT, R̄ ∧ T̄

R∃ � R,∃xT,∃x(R̄ ∧ T̄)
R∀ � ∀xR,∃xT,∃x(R̄ ∧ T̄)

R∨ � ∀xR ∨ ∃xT,∃x(R̄ ∧ T̄)

and

Ax � R, R̄
Ax � T, T̄

R∧ � R ∧ T, R̄, T̄
R∃ � R ∧ T, R̄,∃xT̄

R∃ � ∃x(R ∧ T), R̄,∃xT̄
R∀ � ∃x(R ∧ T),∀xR̄,∃xT̄

R∨ � ∃x(R ∧ T),∀xR̄ ∨ ∃xT̄

,

and for the rules

S{R[x/τ]}
n↓

S{∃xR} and
S{∀xR}

n↑
S{R[x/τ]}

we have the proofs

Ax � R[x/τ], R[x/τ]
R∃ � ∃xR,R[x/τ]

and
Ax � R[x/τ], R̄[x/τ]
R∃ � R[x/τ],∃xR̄

.

32 CHAPTER 3. PREDICATE LOGIC

S{t}
i↓

S [R, R̄]

S{f}
w↓

S{R}
S [R,R]

c↓
S{R}

S([R,T], U)
s
S [(R,U), T]

S{∀x[R,T]}
u↓

S [∀xR,∃xT]

S{R[x/τ]}
n↓

S{∃xR}

Figure 3.3: System KSgq

Corollary 3.3.6. If a formula S has a proof in SKSgq then � S
G

has a proof
in GS1.

Soundness and completeness of SKSgq, i.e. the fact that a formula has a proof
in SKSgq if and only if it is valid, follows from soundness and completeness
of GS1 by Corollaries 3.3.2 and 3.3.6. Moreover, a formula T implies a
formula R if and only if there is a derivation from T to R, which follows
from soundness and completeness and the deduction theorem.

3.4 Cut Admissibility

Just like in the propositional case, the up-rules of the symmetric system
are admissible. By removing them from SKSgq we obtain the asymmetric,
cut-free system shown in Figure 3.3, which is called system KSgq.

Theorem 3.4.1. The rules i↑, w↑, c↑, u↑ and n↑ are admissible for system
KSgq.

Proof.

S

SKSgq Corollary 3.3.5 GS1
+Cut

� S
G

Cut elimination
for GS1 GS1

� S
G

Corollary 3.3.3

S

KSgq

Corollary 3.4.2. The systems SKSgq and KSgq are equivalent.

Chapter Summary

We have extended the deep symmetric system of the previous chapter to
predicate logic. The translations to and from the the one-sided sequent

3.4. CUT ADMISSIBILITY 33

calculus have also been extended—and thus the proof of cut admissibility.
A nice feature of this system is that, for all its rules, the premise implies the
conclusion, which is not true in sequent systems for predicate logic.

34 CHAPTER 3. PREDICATE LOGIC

Chapter 4

Locality

Inference rules that copy an unbounded quantity of information are prob-
lematic from the points of view of complexity and implementation. In the
sequent calculus, an example is given by the contraction rule:

� Φ, A,A
.� Φ, A

Here, going from bottom to top in constructing a proof, a formula A of
unbounded size is duplicated. Whatever mechanism performs this duplica-
tion, it has to inspect all of A, so it has to have a global view on A. If, for
example, we had to implement contraction on a distributed system, where
each processor has a limited amount of local memory, the formula A could
be spread over a number of processors. In that case, no single processor has
a global view on A, and we should put in place complex mechanisms to cope
with the situation.

Let us call local those inference rules that do not require such a global view
on formulas of unbounded size, and non-local those rules that do. Further
examples of non-local rules are the promotion rule in the sequent calculus
for linear logic (left, [18]) and context-sharing (or additive) rules found in
various sequent systems (right, [44]):

� A, ?B1, . . . , ?Bn

�!A, ?B1, . . . , ?Bn

and
� Φ, A � Φ, B

.� Φ, A ∧ B

To apply the promotion rule, one has to check whether all formulas in the
context are prefixed with a question mark modality: the number of formulas
to check is unbounded. To apply the context-sharing R∧ rule, a context of
unbounded size has to be copied.

While there are methods to solve these problems in an implementation,
an interesting question is whether it is possible to approach them proof-

35

36 CHAPTER 4. LOCALITY

theoretically, i.e. by avoiding non-local rules. This chapter gives an affir-
mative answer by presenting systems for both classical propositional and
first-order predicate logic in which context-sharing rules as well as contrac-
tion are replaced by local rules. For propositional logic it is even possible to
obtain a system which contains local rules only.

Locality is achieved by reducing the problematic rules to their atomic forms.
This phenomenon is not restricted to the calculus of structures: in most
sequent systems for classical logic the identity axiom is reduced to its atomic
form, i.e.

� A, Ā is equivalently replaced by � a, ā ,

where a is an atom. Contraction, however, cannot be replaced by its atomic
form in known sequent systems, as we will see in Section 4.3.

In this chapter we will see a local system for propositional logic and a system
for predicate logic which is local except for the treatment of variables.

4.1 Propositional Logic

In the following we will obtain system SKS, which is equivalent to system
SKSg, but identity, cut, weakening and contraction are restricted to atomic
form. This entails locality of the system.

4.1.1 Reducing Rules to Atomic Form

In the sequent calculus, the identity rule can be reduced to its atomic form.
The same is true for our system, i.e.

S{t}
i↓

S [R, R̄]
is equivalently replaced by

S{t}
ai↓

S [a, ā]
,

where ai↓ is the atomic identity rule. Similarly to the sequent calculus, this
is achieved by inductively replacing an instance of the general identity rule
by instances on smaller formulas:

S{t}
i↓

S [P,Q, (P̄ , Q̄)]
�

S{t}
i↓

S [Q, Q̄]
i↓

S([P, P̄], [Q, Q̄])
s
S [Q, ([P, P̄], Q̄)]

s
S [P,Q, (P̄ , Q̄)]

.

4.1. PROPOSITIONAL LOGIC 37

What is new in the calculus of structures is that the cut can also be reduced
to atomic form: just take the dual derivation of the one above:

S(P̄ , Q̄, [P,Q])
i↑

S{f} �
S(Q̄, P̄ , [Q,P])

s
S(Q̄, [(P̄ , P), Q])

s
S [(P̄ , P), (Q̄,Q)]

i↑
S(Q̄,Q)

i↑
S{f}

.

In this way, the general cut rule is equivalently replaced by the atomic cut
rule:

S(R, R̄)
i↑

S{f} is equivalently replaced by
S(a, ā)

ai↑
S{f} .

It turns out that weakening can also be reduced to atomic form. When
identity, cut and weakening are restricted to atomic form, there is only one
non-local rule left in system KSg: contraction. It can not be reduced to
atomic form in system KSg. Tiu solved this problem when he discovered the
medial rule [8]:

S [(R,U), (T, V)]
m

S([R,T], [U, V])
.

This rule has no analogue in the sequent calculus. But it is clearly sound
because we can derive it:

Proposition 4.1.1. The medial rule is derivable for {c↓,w↓}. Dually, the
medial rule is derivable for {c↑,w↑}.

Proof. The medial rule is derivable as follows (or dually):

S [(R,U), (T, V)]
w↓

S [(R,U), (T, [U, V])]
w↓

S [(R,U), ([R,T], [U, V])]
w↓

S [(R, [U, V]), ([R,T], [U, V])]
w↓

S [([R,T], [U, V]), ([R,T], [U, V])]
c↓ .

S([R,T], [U, V])

The medial rule has also been considered by Došen and Petrić as a composite
arrow in the free bicartesian category, cf. the end of Section 4 in [13]. It is

38 CHAPTER 4. LOCALITY

composed of four projections and a pairing of identities (or dually) in the
same way as medial is derived using four weakenings and a contraction in
the proof above.

Once we admit medial, then not only identity, cut and weakening, but also
contraction is reducible to atomic form:

Theorem 4.1.2. The rules i↓, w↓ and c↓ are derivable for {ai↓, s}, {aw↓, s}
and {ac↓,m}, respectively. Dually, the rules i↑, w↑ and c↑ are derivable for
{ai↑, s}, {aw↑, s} and {ac↑,m}, respectively.

Proof. I will show derivability of the rules {i↓,w↓, c↓} for the respective
systems. The proof of derivability of their co-rules is dual.

Given an instance of one of the following rules:

S{t}
i↓

S [R, R̄]
,

S{f}
w↓

S{R} ,
S [R,R]

c↓
S{R} ,

construct a new derivation by structural induction on R:

1. R is an atom. Then the instance of the general rule is also an instance
of its atomic form.

2. R = t or R = f. Then the instance of the general rule is an instance
of the equivalence rule, with the only exception of weakening in case
that R = t. Then this instance of weakening can be replaced by

S{f}
=

S([t, t], f)
s
S [t, (t, f)]

= .
S{t}

3. R = [P,Q]. Apply the induction hypothesis respectively on

S{t}
i↓

S [Q, Q̄]
i↓

S([P, P̄], [Q, Q̄])
s
S [Q, ([P, P̄], Q̄)]

s ,
S [P,Q, (P̄ , Q̄)]

S{f}
=

S [f, f]
w↓

S [f, Q]
w↓ ,

S [P,Q]

S [P,P,Q,Q]
c↓

S [P,P,Q]
c↓ .

S [P,Q]

4.1. PROPOSITIONAL LOGIC 39

S{t}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{f}

S([R,U], T)
s
S [(R,T), U]

S [(R,U), (T, V)]
m

S([R,T], [U, V])

S{f}
aw↓

S{a}
S{a}

aw↑
S{t}

S [a, a]
ac↓

S{a}
S{a}

ac↑
S(a, a)

Figure 4.1: System SKS

4. R = (P,Q). Apply the induction hypothesis respectively on

S{t}
i↓

S [Q, Q̄]
i↓

S([P, P̄], [Q, Q̄])
s
S [([P, P̄], Q), Q̄]

s ,
S [(P,Q), P̄ , Q̄]

S{f}
=

S(f, f)
w↓

S(f, Q)
w↓ ,

S(P,Q)

S [(P,Q), (P,Q)]
m

S([P,P], [Q,Q])
c↓

S([P,P], Q)
c↓ .

S(P,Q)

4.1.2 A Local System for Propositional Logic

We now obtain the local system SKS from SKSg by restricting identity, cut,
weakening and contraction to atomic form and adding medial. It is shown
in Figure 4.1. The names of the rules are as in system SKSg, except that
the atomic rules carry the attribute atomic, for example aw↑ is the atomic
co-weakening rule:

Theorem 4.1.3. System SKS and system SKSg are strongly equivalent.

40 CHAPTER 4. LOCALITY

Proof. Derivations in SKSg are translated to derivations in SKS by Theorem
4.1.2, and vice versa by Proposition 4.1.1.

Thus, all results obtained for the non-local system, in particular the corre-
spondence with the sequent calculus and admissibility of the up-rules, also
hold for the local system. By removing the up-rules from system SKS we
obtain system KS, shown in Figure 4.2.

S{t}
ai↓

S [a, ā]

S{f}
aw↓

S{a}
S [a, a]

ac↓
S{a}

S([R,T], U)
s
S [(R,U), T]

S [(R,T), (U, V)]
m

S([R,U], [T, V])

Figure 4.2: System KS

Theorem 4.1.4. System KS and system KSg are strongly equivalent.

Proof. As in the proof of the previous theorem (Theorem 4.1.3).

Notation 4.1.5. While the non-local rules, general identity, weakening, con-
traction and their duals {i↓, i↑,w↓,w↑, c↓, c↑} do not belong to SKS, I will
freely use them to denote a corresponding derivation in SKS according to
Theorem 4.1.2. For example, I will use

[(a, b), (a, b)]
c↓

(a, b)

to denote either

[(a, b), (a, b)]
m

([a, a], [b, b])
ac↓

([a, a], b)
ac↓ or

(a, b)

[(a, b), (a, b)]
m

([a, a], [b, b])
ac↓

(a, [b, b])
ac↓ .

(a, b)

In system SKSg and also in sequent systems, there is no bound on the
size of formulas that can appear as an active formula in an instance of
the contraction rule. Implementing those systems for proof search thus
requires duplicating formulas of unbounded size. One could avoid this by
putting in place some mechanism of sharing and copying on demand, but
this would make for a significant difference between the formal system and

4.1. PROPOSITIONAL LOGIC 41

its implementation. It is more desirable to have no such difference between
the formal system that is studied theoretically and its implementation that
is used.

In system SKS, no rule requires duplicating formulas of unbounded size. In
fact, because no rule needs to inspect formulas of unbounded size, I call this
system local. The atomic rules only need to duplicate, erase or compare
atoms. The switch rule involves formulas of unbounded size, namely R,
T and U . But it does not require inspecting them. To see this, consider
formulas represented as binary trees in the obvious way. Then the switch rule
can be implemented by changing the marking of two nodes and exchanging
two pointers:

[]

()

R U T

�

()

[]

R U T

.

The same technique works for medial. The equations are local as well,
including the De Morgan laws. However, since the rules in SKS introduce
negation only on atoms, it is even possible to restrict negation to atoms from
the beginning, as is customary in the one-sided sequent calculus, and drop
the equations for negation entirely.

The concept of locality depends on the representation of formulas. Rules
that are local for one representation may not be local when another repre-
sentation is used. For example, the switch rule is local when formulas are
represented as trees, but it is not local when formulas are represented as
strings.

One motivation for locality is to simplify distributed implementation of an
inference system. Of course, locality by itself still makes no distributed im-
plementation. There are tasks to accomplish in an implementation of an
inference system that in general require a global view on formulas, for ex-
ample matching a rule, i.e. finding a redex. There should also be some mech-
anism for backtracking. I do not see how these problems can be approached
within a proof-theoretic system with properties like cut elimination. How-
ever, the application of a rule, i.e. producing the contractum from the redex,
is achieved locally in system SKS. For that reason I believe that it lends
itself more easily to distributed implementation than other systems.

42 CHAPTER 4. LOCALITY

4.2 Predicate Logic

For predicate logic we will now obtain system SKSq, which is equivalent to
system SKSgq, but, like in the propositional case, cut, identity, weakening
and contraction are restricted to atomic form. The resulting system is local
except for the rules that instantiate variables or check for free occurrences
of a variable.

4.2.1 Reducing Rules to Atomic Form

Cut and identity are reduced to atomic form by using the rules u↓ and u↑,
which follow a scheme or recipe due to Guglielmi [21]. This scheme, which
also yields the switch rule, ensures atomicity of cut and identity not only
for classical logic but also for several other logics.

To reduce contraction to atomic form, we need the following rules in addition
to medial:

S [∃xR,∃xT]
l1↓

S{∃x[R,T]}
S{∀x(R,T)}

l1↑
S(∀xR,∀xT)

S [∀xR,∀xT]
l2↓

S{∀x[R,T]}
S{∃x(R,T)}

l2↑ .
S(∃xR,∃xT)

Note that they are local. Like medial, they have no analogues in the sequent
calculus. In system SKSgq, and similarly in the sequent calculus, the corre-
sponding inferences are made using contraction and weakening:

Proposition 4.2.1. The rules {l1↓, l2↓} are derivable for {c↓,w↓}. Dually,
the rules {l1↑, l2↑} are derivable for {c↑,w↑}.

Proof. I show the case for l1↓, the other cases are similar or dual:

S [∃xR,∃xT]
w↓

S [∃xR,∃x[R,T]]
w↓

S [∃x[R,T],∃x[R,T]]
c↓ .

S{∃x[R,T]}

Theorem 4.2.2. The rules i↓, w↓ and c↓ are derivable for {ai↓, s, u↓}, {aw↓, s}
and {ac↓,m, l1↓, l2↓}, respectively. Dually, the rules i↑, w↑ and c↑ are deriv-
able for {ai↑, s, u↑}, {aw↑, s} and {ac↑,m, l1↑, l2↑}, respectively.

4.2. PREDICATE LOGIC 43

Proof. The proof is an extension of the proof of Theorem 4.1.2 by the in-
ductive cases for the quantifiers. Given an instance of one of the following
rules:

S{t}
i↓

S [R, R̄]
,

S{f}
w↓

S{R} ,
S [R,R]

c↓
S{R} ,

construct a new derivation by structural induction on R:

1. R = ∃xT . Apply the induction hypothesis respectively on

S{t}
=

S{∀xt}
i↓

S{∀x[T, T̄]}
u↓ ,

S [∃xT,∀xT̄]

S{f}
=

S{∃xf}
w↓ ,

S{∃xT}

S [∃xT,∃xT]
l1↓

S{∃x[T, T]}
c↓ .

S{∃xT}

2. R = ∀xT . Apply the induction hypothesis respectively on

S{t}
=

S{∀xt}
i↓

S{∀x[T, T̄]}
u↓ ,

S [∀xT,∃xT̄]

S{f}
=

S{∀xf}
w↓ ,

S{∀xT}

S [∀xT,∀xT]
l2↓

S{∀x[T, T]}
c↓ .

S{∀xT}

4.2.2 A Local System for Predicate Logic

We now obtain system SKSq from SKSgq by restricting identity, cut, weaken-
ing and contraction to atomic form and adding the rules {m, l1↓, l2↓, l1↑, l2↑}.
It is shown in Figure 4.3.

As in all the systems considered, the up-rules, i.e. {n↑, u↑, l1↑, l2↑} are ad-
missible. Hence, system KSq, shown in Figure 4.4, is complete.

Theorem 4.2.3. System SKSq and system SKSgq are strongly equivalent.
Also, system KSq and system KSgq are strongly equivalent.

Proof. Derivations in SKSgq are translated to derivations in SKSq by The-
orem 4.2.2, and vice versa by Proposition 4.2.1. The same holds for KSgq
and KSq.

Thus, all results obtained for system SKSgq also hold for system SKSq. As
in the propositional case, I will freely use general identity, cut, weakening

44 CHAPTER 4. LOCALITY

S{t}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{f}

S([R,U], T)
s
S [(R,T), U]

S{∀x[R,T]}
u↓

S [∀xR,∃xT]

S(∃xR,∀xT)
u↑

S{∃x(R,T)}

S [∃xR,∃xT]
l1↓

S{∃x[R,T]}
S{∀x(R,T)}

l1↑
S(∀xR,∀xT)

S [(R,U), (T, V)]
m

S([R,T], [U, V])
S [∀xR,∀xT]

l2↓
S{∀x[R,T]}

S{∃x(R,T)}
l2↑

S(∃xR,∃xT)

S{f}
aw↓

S{a}
S{a}

aw↑
S{t}

S [a, a]
ac↓

S{a}
S{a}

ac↑
S(a, a)

S{R[x/τ]}
n↓

S{∃xR}
S{∀xR}

n↑
S{R[x/τ]}

Figure 4.3: System SKSq

and contraction to denote a corresponding derivation in SKSq according to
Theorem 4.2.2.

As we have seen in the previous section, the technique of reducing contrac-
tion to atomic form to obtain locality also works in the case of predicate
logic: the non-local rule c↓ is equivalently replaced by local ones, namely
{ac↓,m, l1↓, l2↓}.
However, there are other sources of non-locality in system SKSq. One is the

4.3. LOCALITY AND THE SEQUENT CALCULUS 45

S{t}
ai↓

S [a, ā]

S{f}
aw↓

S{a}
S [a, a]

ac↓
S{a}

S([R,T], U)
s
S [(R,U), T]

S{∀x[R,T]}
u↓

S [∀xR,∃xT]

S [(R,T), (U, V)]
m

S([R,U], [T, V])

S{R[x/τ]}
n↓

S{∃xR}
S [∃xR,∃xT]

l1↓
S{∃x[R,T]}

S [∀xR,∀xT]
l2↓

S{∀x[R,T]}

Figure 4.4: System KSq

condition on the quantifier equations:

∀yR = ∃yR = R where y is not free in R.

To add or remove a quantifier, a formula of unbounded size has to be checked
for occurrences of the variable y.

Another is the n↓ rule, in which a term τ of unbounded size has to be copied
into an unbounded number of occurrences of x in R. It is non-local for two
distinct reasons: 1) the unbounded size of τ and 2) the unbounded number
of occurrences of x in R. The unboundedness of term τ can be dealt with, as
we will see in Section 5.2.1, page 52. But this does not address the problem
of the unbounded number of occurrences of x in R.

Is it possible to obtain a system for first-order predicate logic in which
variables are treated locally? I do not know how to do it without adding new
symbols to the language of predicate logic. But it is conceivable to obtain a
local system by introducing substitution operators together with rules that
explicitly handle the instantiation of variables piece by piece. The question
is whether this can be done without losing the good properties, especially
cut elimination and simplicity.

4.3 Locality and the Sequent Calculus

The question is whether deep inference is needed for locality, or whether it
can be obtained in sequent systems as well. In system G3cp [44], for exam-
ple, contraction is admissible and can thus trivially be restricted to atoms
or to the bottom of a proof. However, G3cp has an additive (or context-
sharing) R∧-rule, so these restrictions on contraction do not entail locality.
Contraction is admissible, but additive rules such as R∧ implicitly duplicate
formulas which may be non-atomic. Of course, R∧ is not admissible.

46 CHAPTER 4. LOCALITY

It thus remains to be seen whether locality can be achieved in systems with
a multiplicative (or context-independent) R∧-rule. It turns out not to be the
case because contraction cannot be reduced to atomic form. The argument
given below is for system GS1p with multiplicative context treatment, shown
in Figure 2.4 on page 15. However, it works for various sequent systems, as
long as they have a multiplicative R∧-rule.

Proposition 4.3.1. There is a valid sequent that has no proof in multiplicative
GS1p in which all contractions are atomic.

Proof. Consider the following sequent:

� a ∧ b, (ā ∨ b̄) ∧ (ā ∨ b̄) . (4.1)

The sequent contains no atoms, so atomic contraction cannot be applied.
Each applicable rule leads to a premise that is not valid.

Chapter Summary

Starting from the deductive systems that were introduced in the previous
two chapters, we have obtained strongly equivalent systems in which identity,
cut, weakening and contraction are reduced to their atomic forms. The re-
sulting rules are local, which could be interesting for example for distributed
implementation. For propositional logic we obtained a system which is local,
for predicate logic one which is local except for the treatment of variables.
In the sequent calculus locality can not be achieved because contraction is
not reducible to atomic form.

Chapter 5

Finite Choice

I will call finitely generating an inference rule if, given its conclusion, there is
only a finite number of premises to choose from. Otherwise a rule is called in-
finitely generating. The cut rule in a sequent system is infinitely generating:
given its conclusion, there is an infinite choice of premises, corresponding to
an infinite choice of cut formulas. Much effort has been devoted to eliminat-
ing this source on infinity in various systems: theorems of cut elimination
remove infinite choice together with the cut rule itself, and are at the core
of proof theory. There is another source of infinite choice in the bottom-up
construction of a first order proof, namely the choice in instantiating an
existentially quantified variable. Research grounded in Herbrand’s theorem
[26] deals with this aspect and is at the core of automated deduction and
logic programming.

This chapter shows how one can eliminate all sources of infinite choice in a
system of first order classical logic in a very simple way. The main idea we
exploit is that there are actually two sources of infinite choice in the cut rule:
an infinite choice of atoms and an infinite choice in how these atoms can be
combined for making formulas. In predicate logic the first source of infinite
choice can again be divided into an infinite choice of predicate symbols on
one hand and an infinite choice of substitutions on the other hand. Deep
inference allows us to separate these various kinds of infinite choice.

In the sequent calculus, it is impossible to separate these kinds of infinite
choice in a cut rule without going through cut elimination. Instead, in the
calculus of structures one can straightforwardly reduce the cut rule to its
atomic form, as we have seen in the previous chapter. This has the advantage
of not presenting infinite choice in combining atoms to shape a formula.
Similar techniques reduce the instantiation rules into more elementary ones.
Infinite choice in the elementary rules so produced can be removed by simple
considerations that essentially limit the range of possibilities to the atoms
and terms that already appear in the conclusions of rules.

47

48 CHAPTER 5. FINITE CHOICE

As shown before, systems in the calculus of structures offer the same proof
theoretical properties as systems in the sequent calculus, in particular it is
possible to prove cut elimination. The point here is that it is possible to
eliminate infinite choice without having to use these more complex methods.
As an example, we will see how to prove consistency in this setting.

The point here is not that we can obtain finitely generating deductive sys-
tems for propositional and predicate logic. There already are plenty of
deductive systems like cut-free sequent systems, or methods from auto-
mated theorem proving like resolution [33], tableaux [38] and the connection
method [45]. These systems are finitely generating (or at least have imple-
mentations based on finitely generating rules). This should come as no
surprise since these systems and methods are cut-free. Here, we keep the
cut and obtain finite choice nevertheless.

The notion of a finitely generating inference rule is closely related to that of
an analytic rule, cf. Smullyan [37]. An analytic rule is one that obeys the
subformula property. We tend to think of the notion of being finitely gener-
ating as a more general, weaker subformula property: there are interesting
rules that are finitely generating but do not obey the subformula property,
for example in system GS4ip, cf. Dyckhoff [14]. However, not all analytic
rules are finitely generating, as witnessed by the existential-right rule. This
is due to the fact that analyticity is defined with respect to the notion of
Gentzen subformula (where instances of subformulae count as subformulae),
rather than the literal notion of subformula.

In the systems presented here, we have an analytic cut rule: it only intro-
duces atoms that occur in the conclusion. So, even when allowing the use of
cut, the only infinity that remains in proof search is the unboundedness of
the proofs themselves: at any given step, there are finitely many inferences
possible, and each inference rule can only be applied in a finite number of
different ways. The cut behaves similarly to the contraction rule: it is always
applicable, but only in a finite number of ways.

5.1 Propositional Logic

5.1.1 Eliminating Infinite Choice in Inference Rules

There are two infinitely generating rules in system SKS: the atomic co-
weakening and the atomic cut rule. In the following we will see how to
replace those rules by finitely generating ones without affecting provability.
The equivalence rule is also infinitely generating, but can be broken up into
several rules, for commutativity, associativity, and so on. Those rules are
finitely generating.

5.1. PROPOSITIONAL LOGIC 49

The Atomic Co-weakening Rule

The rule aw↑ is clearly infinitely generating since there is an infinite choice of
atoms, but it can immediately be eliminated by using a cut and an instance
of aw↓ as follows:

S{a}
aw↑

S{t} �

S{a}
=

S(a, [t, f])
s
S [t, (a, f)]

aw↓
S [t, (a, ā)]

ai↑
S [t, f]

=
S{t}

.

The Atomic Cut Rule

The cut is the most prominent infinitely generating rule. The first source
of infinite choice, the arbitrary size of the cut formula, has already been
removed by Theorem 4.1.2. The atomic cut rule,

S(a, ā)
ai↑

S{f} ,

still is infinitely generating, since there is an infinite choice of atoms. To
remove this infinite choice, consider the rule finitely generating atomic cut

S(a, ā)
fai↑ where a or ā appears in the conclusion.

S{f}

This rule is finitely generating, and we will show that we can easily transform
a proof into one where the only cuts that appear are fai↑ instances.

Take a proof in SKS\{aw↑}. Single out the bottommost instance of ai↓ that
violates the proviso of fai↑:

S(a, ā)
ai↑ ,

S{f}

where neither a nor ā appears in S{f}. We can then replace all instances
of a and ā in the proof above the cut with t and f, respectively, to obtain
a proof of S{f}. It is easy to check that all rule instances stay intact or

50 CHAPTER 5. FINITE CHOICE

become instances of the equivalence rule. The cut, for example, is replaced
by an instance of the equivalence rule

S(a, ā)
ai↑

S{f} � S(t, f)
=

S{f} .

Please notice that if a or ā appeared in S{f}, then this would not work,
because it could destroy the rule instance below S{f}.
Proceeding inductively upwards, we remove all infinitely generating atomic
cuts.

5.1.2 A Finitely Generating System for Propositional Logic

We now define the finitely generating system FKS to be

(SKS \ {ai↑, aw↑}) ∪ {fai↑} ,

and, for what we said above, state

Theorem 5.1.1. Each formula is provable in system SKS if and only if it is
provable in system FKS.

To put our finitely generating system at work, we now show consistency of
system SKS by showing consistency of system FKS.

Theorem 5.1.2. The unit f is not provable in system FKS.

Proof. No atoms, but only f, t can appear in such a proof. It is easy to
show that f is not equivalent to t. Then we show that no rule can have a
premise equivalent to t and a conclusion equivalent to f. This is simply done
by inspection of all the rules in FKS.

From the two theorems above we immediately get

Corollary 5.1.3. The unit f is not provable in system SKS.

Here is an example that makes use of the symmetry of the calculus of struc-
tures by flipping derivations: assuming that we can not prove f in the system,
having a proof of R implies that there is no proof of R̄. We assume that we
have both proofs:

R
and

R̄
,

5.2. PREDICATE LOGIC 51

dualise the proof of R, to get

R̄

f

,

and compose this derivation with the proof of R̄ to get a proof of f, which
is a contradiction:

R̄

f

,

so we obtain

Corollary 5.1.4. If a formula is provable in system SKS then its negation is
not provable.

5.2 Predicate Logic

5.2.1 Eliminating Infinite Choice in Inference Rules

There are three infinitely generating rules in system SKSq: the atomic
co-weakening, the atomic cut, and the instantiation rule. The atomic co-
weakening can be easily removed as in the propositional case. In the fol-
lowing we will see how to replace atomic cut and instantiation by finitely
generating rules without affecting provability.

The Atomic Cut Rule

Let us take a closer look at the atoms in the atomic cut rule:

S(p(τ1, . . . , τn), p(τ1, . . . , τn))
ai↑ .

S{f}

There are both an infinite choice of predicate symbols p and an infinite
choice of terms for each argument of p. Let

→
τ denote τ1, . . . , τn and

→
x

denote x1, . . . , xn. Since cuts can be applied inside existential quantifiers,
we can delegate the choice of terms to a sequence of n↓ instances:

S(p(
→
τ), p(

→
τ))

ai↑
S{f}

�
S(p(

→
τ), p(

→
τ))

n↓n

S{∃ →
x (p(

→
x), p(

→
x))}

ai↑
S{∃ →

x f}
=

S{f}

.

52 CHAPTER 5. FINITE CHOICE

The remaining cuts are restricted in that they do not introduce arbitrary
terms but just existential variables. Let us call this restricted form vai↑:

S(p(
→
x), p(

→
x))

vai↑ .
S{f}

The only infinite choice that remains is the one of the predicate symbol p.
To remove it, consider the rule finitely generating atomic cut

S(p(
→
x), p(

→
x))

fai↑ where p appears in the conclusion.
S{f}

This rule is finitely generating, and we will show that we can easily transform
a proof into one where the only cuts that appear are fai↑ instances.

Take a proof in the system we obtained so far, that is SKSq without aw↑,
and with vai↑ instead of ai↑. Single out the bottommost instance of vai↓ that
violates the proviso of fai↑:

S(p(
→
x), p(

→
x))

vai↑ ,
S{f}

where p does not appear in S{f}. We can then replace all instances of p(
→
x)

and p(
→
x) in the proof above the cut with t and f, respectively, to obtain

a proof of S{f}. It is easy to check that all rule instances stay intact or
become instances of the equivalence rule. As in the propositional case, the
cut rule is replaced by an instance of equivalence

S(a, ā)
vai↑

S{f} � S(t, f)
=

S{f} .

Please notice that if p appeared in S{f}, then this would not work, because
it could destroy the rule instance below S{f}.
Proceeding inductively upwards, we remove all infinitely generating atomic
cuts.

The Instantiation Rule

The same techniques also work for instantiation. Consider these two re-
stricted versions of n↓:

S{R[x/f(
→
x)]}

n↓1
S{∃xR} and

S{R[x/y]}
n↓2

S{∃xR} .

5.2. PREDICATE LOGIC 53

An instance of n↓ that is not an instance of n↓2 can inductively be replaced
by instances of n↓1 (choose variables for

→
x that are not free in R):

S{R[x/f(
→
τ)]}

n↓
S{∃xR} �

S{R[x/f(
→
τ)]}

n↓n

S{∃ →
x R[x/f(

→
x)]}

n↓1
S{∃ →

x ∃xR}
=

S{∃xR}

.

This process can be repeated until all instances of n↓ are either instances of
n↓1 or n↓2.

Now consider the following finitely generating rules,

S{R[x/f(
→
x)]}

fn↓1
S{∃xR} and

S{R[x/y]}
fn↓2

S{∃xR} .

where fn↓1 carries the proviso that the function symbol f either occurs in
the conclusion or is a fixed constant c, and fn↓2 carries the proviso that the
variable y appears in the conclusion (no matter whether free or bound or in
a vacuous quantifier).

Infinitely generating instances of n↓1 and n↓2, i.e. those that are not instances
of fn↓1 and fn↓2, respectively, are easily replaced by finitely generating rules
similarly to how the infinitely generating cuts were eliminated. Take the
constant symbol c that is fixed in the proviso of fn↓1, and throughout the
proof above an infinitely generating instance of n↓1, replace all terms that
are instances of f(

→
x) by c. For n↓2 we do the same to all occurrences of y,

turning it into an instance of fn↓1.

The Equivalence and Co-instantiation Rules

The equivalence rule can be broken up into several rules, just like in the
propositional case. Those rules are finitely generating except for variable re-
naming and vacuous quantifier, which, technically speaking, have an infinite
choice of names for bound variables. The same goes for the co-instantiation
rule. Of course these rules can be made finitely generating since the choice
of names of bound variables does not matter. There is nothing deep in it:
the only reason for me to tediously show this obvious fact is to avoid giving
the impression that I hide infinity under the carpet of the equivalence. The
need for the argument below just comes from a syntax which has infinitely
many different objects for essentially the same thing, e.g. ∀xp(x),∀yp(y)
and ∀y∀xp(x) If you are not concerned about this ‘infinite’ choice of
names of bound variables, then please feel invited to skip ahead to the next
section.

54 CHAPTER 5. FINITE CHOICE

Consider the following rules for variable renaming and vacuous quantifier,
they all carry the proviso that x is not free in R:

S{∀xR[y/x]}
α↓

S{∀yR}
S{∃xR[y/x]}

α↑
S{∃yR}

S{∃xR}
v↓

S{R}
S{R}

v↑
S{∀xR}

Let us now consider proofs in the system that is obtained from SKSq by
restricting the equivalence rule to not include vacuous quantifier and variable
renaming and by adding the above rules. This system is strongly equivalent
to SKSq as can easily be checked.

The rule v↑ is clearly finitely generating. Let us see how to replace the
infinitely generating rule v↓ by finitely generating rules, the same technique
also works for the rules α ↑ and α ↓. Consider the finitely generating rule
fv↓1, which is v↓ with the added proviso that x occurs in the conclusion (no
matter whether bound or free or in a vacuous quantifier) and the infinitely
generating rule v↓′ which is v↓ with the proviso that x does not occur in
the conclusion.

Fix a total order on variables. Let fv↓2 be v↓ with the proviso that x is the
lowest variable in the order that does not occur in the conclusion. This rule
is clearly finitely generating: there is no choice.

Each instance of v↓ is either an instance of fv↓1 or of v↓′. In a given proof,
all instances of v↓′ can be replaced by instances of fv↓2 as follows, as we we
will see now. Starting from the conclusion, going up in the proof, identify
the first infinitely generating vacuous quantifier rule:

S{∃xR}
v↓′ x does not occur in S{R}

S{R}

T

,

where x is not the lowest in our fixed order that does not occur in the con-
clusion. Let y be the lowest variable that does not occur in the conclusion.
Now, throughout the proof above, do the following:

1. Choose a variable z that does not occur in the proof. Replace y by z.

2. Replace x by y.

5.2. PREDICATE LOGIC 55

By definition neither x nor y occur in the conclusion, so the conclusion is
not broken. All the replacements respect that variable occurrences with
different names stay different and variable occurrences with the same names
stay the same. So the proof above stays intact. Replace the v↓′ instance by
a fv↓2 instance and proceed inductively upwards.

5.2.2 A Finitely Generating System for Predicate Logic

We now obtain the finitely generating system FKSq from SKSq by removing
the rules {ai↑, aw↑, n↓} and adding the rules shown in Figure 5.1. Note that,
strictly speaking, this system is not finitely generating because of the infinite
choice in naming bound variables. As we have seen in the last section, we
can easily obtain a system that is finitely generating. However, that would
be a bit pedantic and would clutter up what is relevant here: the finite
choice in the cut and in the instantiation rule.

S(p(
→
x), p(

→
x))

fai↑ where p appears in the conclusion
S{f}

S{R[x/f(
→
x)]}

fn↓1
where f either occurs in the con-
clusion or is a fixed constant cS{∃xR}

S{R[x/y]}
fn↓2 where y appears in the conclusion

S{∃xR}

Figure 5.1: Finitely generating rules

From the previous sections we know that the following theorem holds:

Theorem 5.2.1. Each formula is provable in system SKSq if and only if it is
provable in system FKSq.

Consistency of system FKSq can now be shown just like in the propositional
case. Of course, for this purpose it suffices to have finitely generating cut.
Having infinite choice in instantiation would not affect the argument.

Theorem 5.2.2. The unit f is not provable in system FKSq.

From the two theorems above we immediately get

56 CHAPTER 5. FINITE CHOICE

Corollary 5.2.3. The unit f is not provable in system SKSq.

Just like in the propositional case, we can flip derivations to prove

Corollary 5.2.4. If a formula is provable in system SKSq then its negation
is not provable.

Chapter Summary

Starting from the local deductive systems that were introduced in the pre-
vious chapter, we have obtained equivalent systems in which all rules are
finitely generating.

Some of the techniques used, for example the replacement of an atom and
its dual by t and f, are folklore. However, in order to produce a finitely
generating system they have to be combined with the reduction of the cut
rule to its atomic form and the ability to apply rules inside the scope of an
existential quantifier, which are not available in the sequent calculus.

In the sequent calculus, finite choice can not be achieved by such simple
techniques: one relies on cut admissibility. Deep inference and top-down
symmetry allow us to obtain finite choice without having to rely on cut
admissibility.

Deep and symmetric systems for various modal logics [39], linear logic [41,
42] and various extensions of it [22, 25, 9] and for noncommutative logics
[12] are all similar to systems and SKS in the sense that they include rules
which follow a scheme [21], which ensures atomicity of cut and identity. So
it is certainly possible to use the methods presented here for these logics.

Chapter 6

Cut Elimination

In this chapter we will see a syntactic cut elimination procedure for system
SKS. We already know that the cut rule is admissible, both by the semantic
argument and by the translations to the sequent calculus that we have seen
in Chapter 2. However, it is interesting to study techniques for eliminating
the cut without relying on semantics and without relying on translations to
formalisms which already have a cut elimination result. Subjects of interest
are for example the computational interpretation and the complexity of cut
elimination procedures.

To eliminate the cut in system SKS we just have to consider atomic cuts
because the general cut rule easily reduces to its atomic form, as we have
seen in Chapter 4. This allows for a very simple cut elimination procedure:
one induction measure, the cut-rank, just disappears. In fact, the atomicity
of the cut formula allows to simply plug-in proofs during the cut elimination
process, which is more similar to normalisation in natural deduction than
to cut elimination in the sequent calculus.

6.1 Motivation

The two well-known connections between proof theory and language design,
proof search as computation and proof normalisation as computation, have
mainly used different proof-theoretic formalisms. While designers of func-
tional programming languages prefer natural deduction, because of the close
correspondence between proof normalisation and reduction in related term
calculi [15, 30], designers of logic programming languages prefer the sequent
calculus [29], because infinite choice and much of the unwanted nondeter-
minism is limited to the cut rule, which can be eliminated.

System SKS has an explicit cut rule, which is admissible. Thus, in principle,
it is as suitable for proof search as systems in the sequent calculus. System

57

58 CHAPTER 6. CUT ELIMINATION

SKS also admits a cut elimination procedure which is similar to normalisa-
tion in natural deduction. It could thus allow us to develop both the proof
search and the proof normalisation paradigm of computation in the same
formalism and starting from the same system of rules.

6.2 Cut Elimination in Sequent Calculus and Natural
Deduction

Cut elimination in the sequent calculus and normalisation in natural deduc-
tion, widely perceived as ‘morally the same’, differ quite a bit, technically.
Compared to cut elimination, (weak) normalisation is simpler, involving
neither permutation of a multicut rule, nor induction on the cut-rank. The
equivalent of a cut in natural deduction, a succession of an introduction and
an elimination rule, is eliminated as shown in Figure 6.1: first, assumption
A and all its copies are removed from ∆1, as indicated by the arrow in the
left. Second, the derivation ∆2, with the context strengthened accordingly,
is plugged into all the leaves of ∆1 where assumption A was used. This
plugging is indicated by the arrows on the right.

∆1

Γ, A � B⊃I
Γ � A ⊃ B

∆2

Γ� A⊃E
Γ � B

. . .

Γ,Γ1 � A . . . Γ,Γn � A

∆′
1

Γ � B

Figure 6.1: Normalisation in natural deduction

This method relies on the fact that no rule inside ∆1 can change the premise
A, which is why it does not work for the sequent calculus. To eliminate a

6.3. CUT ELIMINATION IN THE CALCULUS OF STRUCTURES 59

cut in the sequent calculus, one has to cope with the fact that rules may
be applied to both, the cut formula and its dual. This requires to permute
up the cut rule step-by-step in a complex procedure. Figure 6.2 shows
how a paradigmatic example of such a step. To see that such a procedure
terminates one has to keep track not only of the distance from the cut to
the top of the proof, but also of the size of the cut formula.

However, given a cut with an atomic cut formula a inside a sequent calculus
proof, we can trace the occurrence of a and its copies produced by con-
traction, identify all the leaves where they are used in identity axioms, and
plug in subproofs in very much the same way as in natural deduction. The
problem for the sequent calculus is that cuts are not atomic, in general.

∆1

� Γ, A

∆2

� Γ′, B
R∧ � Γ,Γ′, A ∧ B

∆3

� ∆, Ā, B̄
R∨ � ∆, Ā ∨ B̄

Cut � Γ,Γ′,∆

∆1

� Γ, A

∆2

� Γ′, B

∆3

� ∆, Ā, B̄
Cut � Γ′,∆, Ā

Cut � Γ,Γ′,∆

Figure 6.2: Cut elimination in the sequent calculus

6.3 Cut Elimination in the Calculus of Structures

In the calculus of structures, there is more freedom in applying inference
rules than in the sequent calculus. While this allows for a richer combi-
natorial analysis of proofs, it is a significant challenge for cut elimination.
During cut elimination, the sequent calculus allows to get into the crucial
situation where on one branch a logical rule applies to the main connective
of the cut formula and on the other branch the corresponding rule applies
to the dual connective of the dual cut formula. In the calculus of structures,
rules apply deep inside a context, they are not restricted to main connec-
tives. The methodology of the sequent calculus thus does not apply to the
calculus of structures. For example, one cannot permute the cut over the
switch rule. One can generalise the cut in order to permute it over switch,

60 CHAPTER 6. CUT ELIMINATION

but this requires a case analysis that is far more complicated than in the
sequent calculus. Contraction is an even bigger problem. Despite many
efforts, no cut elimination procedure along these lines has been found for
system SKS.

Two new techniques were developed to eliminate cuts in the calculus of
structures. The first is called decomposition, and has been used in [24, 42] for
some systems related to linear logic. Proving termination of decomposition
is rather involved [42]. It makes essential use of the exponentials of linear
logic which restrict the use of contraction. So far, this technique could not
be used for classical logic with its unrestricted contraction. The second
technique is called splitting [22], and essentially makes available a situation
corresponding to the one described above for the sequent calculus. Splitting
covers the broadest range of systems in the calculus of structures, it not only
applies to the systems mentioned above, but has recently also been applied
to system SKS (but there are no references yet). Compared to splitting, the
procedure given here is much simpler. In fact, I do not know of any other
system with such a simple cut elimination procedure.

6.4 The Cut Elimination Procedure

The cut elimination procedure presented here is based on the fact that the
cut rule is already reduced to atomic form, which can be taken for granted as
we have seen in Chapter 4. This allows to plug-in proofs as in normalisation
in natural deduction.

There is one difference, however. In the sequent calculus as well as in
sequent-style natural deduction, a derivation is a tree. Seen bottom-up,
a cut splits the tree into two branches. To apply a cut, one is forced to
split the context among the two branches (in the case of multiplicative con-
text treatment) or to duplicate the context (in the case of additive context
treatment). In the calculus of structures, the cut rule does not split the
proof. This is convenient for proof construction, because one is not forced
to split or duplicate a context in order to apply the cut rule. However, it is
an obstacle in the way of getting a cut elimination procedure.

To overcome this obstacle, we split the proof during cut elimination. Apart
from that, the procedure is similar to normalisation in natural deduction.
The idea is illustrated in Figure 6.3: we duplicate the proof above a cut and
remove atom a from one copy, illustrated by the arrow to the right, and
remove the atom ā from the other copy, illustrated by the arrow to the left.
We choose one of the obtained proofs, the one on the left in this case, and
replace a by R throughout the proof, illustrated by the arrow on the left.
This process breaks some instances of identity, for that reason the obtained
object is not a proof. These instances then are fixed by substituting a copy

6.4. THE CUT ELIMINATION PROCEDURE 61

of the the proof on the right for every broken instance, as illustrated by the
arrows on the right. A contraction is applied at the bottom to obtain a
cut-free proof of R.

At this point it may be helpful to compare Figure 6.3 with Figure 6.1. A
more formal presentation of the cut elimination procedure follows below.

[R, a] [R, (a, ā)]
ai↑

R

[R, ā]

S1{t}
ai↓

S1 [R, ā]

[R,R]

...
...

Sn{t}
ai↓

Sn [R, ā]

[R,R]
c↓

R

Figure 6.3: Elimination of one atomic cut

In contrast to the sequent calculus, the cut is not the only problematic rule
in system SKS. The rule aw↑ also induces infinite choice in proof-search.
Fortunately, we can not only eliminate the cut rule, but also the other up-
rules. Each up-rule individually can be shown to be admissible for system
KS. However, since we are going to eliminate the cut anyway, to eliminate
rules aw↑ and ac↑ the following lemma is sufficient.

Lemma 6.4.1. Each rule in SKS is derivable for identity, cut, switch and its
dual rule.

62 CHAPTER 6. CUT ELIMINATION

Proof. An instance of
S{T}

ρ↑
S{R} can be replaced by

S{T}
i↓

S(T, [R, R̄])
s
S [R, (T, R̄)]

ρ↓
S [R, (T, T̄)]

i↑
S{R}

.

The same holds for down-rules.

The atomic cut rule, which applies arbitrarily deep inside a formula, can
easily be replaced by a more restricted version of it. It will then suffice to
eliminate this restricted version in order to eliminate all cuts.

Definition 6.4.2. An instance of atomic cut is called shallow atomic cut if it
is of the following form:

[S, (a, ā)]
ai↑

S
.

Lemma 6.4.3. The atomic cut is derivable for shallow atomic cut and switch.

Proof. An easy induction locally replaces an instance of atomic cut by a
shallow atomic cut followed by instances of switch. The relevant transfor-
mation is

S([R, (a, ā)], T)
ai↑

S([R, f], T)
=

S(R,T)

�
S [(R, (a, ā)), T]

s
S [(R,T), (a, ā)]

ai↑
S [(R,T), f]

=
S(R,T)

.

During cut elimination in the sequent calculus one has access to two proofs
above the cut such that the cut formula is in the conclusion of one proof
and the dual of the cut formula is in the conclusion of the other proof. In
the calculus of structures, we just have one proof above the cut and its
conclusion contains both, the (atomic) cut formula and its dual. To gain
access to two proofs as in the sequent calculus, we need the following lemma.

Lemma 6.4.4. Each proof
T{a}

KS
can be transformed into a proof

T{t}
KS

.

6.4. THE CUT ELIMINATION PROCEDURE 63

Proof. Starting with the conclusion, going up in the proof, in each formula
we replace the occurrence of a and its copies, that are produced by contrac-
tions, by the unit t. Replacements inside the context of any rule instance
leave this rule instance intact. Instances of the rules m and s remain intact,
also in the case that atom occurrences are replaced inside redex and contrac-
tum. Instances of the other rules are replaced by the following derivations:

S [a, a]
ac↓

S{a} � S [t, t]
=

S{t}

S{f}
aw↓

S{a} �
S{f}

=
S([t, t], f)

s
S [t, (t, f)]

=
S{t}

S{t}
ai↓

S [a, ā]
�

S{t}
=

S [t, f]
aw↓ .

S [t, ā]

Properly equipped, we now turn to cut elimination.

Theorem 6.4.5. Each proof
T

SKS can be transformed into a proof
T

KS .

Proof. By Lemma 6.4.1, the only rule left to eliminate is the cut. By Lemma
6.4.3, we replace all cuts by shallow cuts. The topmost instance of cut,
together with the proof above it, is singled out:

T

KS∪{ai↑} =
[R, (a, ā)]

ai↑
R

Π KS

T

∆ KS∪{ai↑}

.

Lemma 6.4.4 is applied twice on Π to obtain

[R, a]

Π1 KS
and

[R, ā]

Π2 KS
.

64 CHAPTER 6. CUT ELIMINATION

Starting with the conclusion, going up in proof Π1, in each formula we
replace the occurrence of a and its copies, that are produced by contractions,
by the formula R.

Replacements inside the context of any rule instance leave the rule instance
intact. Instances of the rules m and s remain intact, also in the case that
atom occurrences are replaced inside redex and contractum. Instances of
ac↓ and aw↓ are replaced by their general versions:

S [a, a]
ac↓ �

S{a}
S [R,R]

c↓
S{R}

S{f}
aw↓ �

S{a}
S{f}

w↓ .
S{R}

Instances of ai↓ are replaced by S{Π2}:

S{t}
ai↓ �

S [a, ā]

S{t}

S [R, ā]

S{Π2} KS .

The result of this process of substituting Π2 into Π1 is a proof Π3, from
which we build

[R,R]
c↓

R

Π3 KS

T

∆ KS∪{ai↓}

Proceed inductively downward with the remaining instances of cut.

Chapter Summary

We have seen a very simple cut elimination procedure for system SKS. Its
simplicity comes from the fact that the cut is already reduced to atomic
form, which allows to use the technique of plugging proofs, similar to what
one does in normalisation for natural deduction.

Chapter 7

Normal Forms

Derivations can be arranged into consecutive phases such that each phase
uses only certain rules. We call this property decomposition. Decomposition
theorems thus provide normal forms for derivations. A classic example of
a decomposition theorem in the sequent calculus is Gentzen’s Mid-Sequent
Theorem [16], which states the possibility of decomposing a cut-free proof
into a lower phase with contraction and quantifier rules and an upper phase
with propositional rules only. In this chapter we will first see the technique
of permuting rules. Then three decomposition theorems are presented which
state the possibility of pushing all instances of a certain rule to the top and
all instances of its dual rule to the bottom of a derivation. Except for the
first, these decomposition theorems do not have analogues in the sequent
calculus. The three decomposition theorems will then be combined to yield
a decomposition of derivations into seven phases where the systems used in
each phase are pairwise disjoint. We then see how these results extend to
predicate logic and why they do not exist in the sequent calculus. In the
last section of the chapter we see a decomposition theorem for propositional
proofs which generalises cut elimination as well as Craig interpolation [10].

7.1 Permutation of Rules

Informally, permuting an instance of a rule over an instance of another
rule in a derivation means exchanging the two rules without breaking the
derivation.

Definition 7.1.1. A rule ρ permutes over a rule π (or π permutes under ρ)

if for every derivation

T
π

U
ρ

R

there is a derivation

T
ρ

V
π

R

for some formula V .

65

66 CHAPTER 7. NORMAL FORMS

Since deep inference grants more freedom in applying inference rules than
shallow inference of the sequent calculus, it also gives rise to more per-
mutability.

Lemma 7.1.2. The rule ac↓ permutes under the rules aw↓, ai↓, s and m.
Dually, the rule ac↑ permutes over the rules aw↑, ai↑, s and m.

Proof. Given an instance of ac↓ above an instance of a rule ρ ∈ {aw↓, ai↓, s,m},
the redex of ac↓ can be a subformula of the context of ρ. Then we permute
as follows:

S′{U}
ac↓

S{U}
ρ

S{R}
�

S′{U}
ρ

S′{R}
ac↓

S{R}
.

Since the redex of ac↓ is an atom, the only other possibility occurs in case
that ρ is s or m: the redex of ac↓ can be a subformula of the contractum
of ρ. Then we permute as in the following example of a switch rule, where
T{ } is a formula context:

S([R,T [a, a]], U)
ac↓

S([R,T{a}], U)
s
S [R, (T{a}, U)]

�
S([R,T [a, a]], U)

s
S([R,T [a, a]], U)

ac↓
S [R, (T{a}, U)]

.

(And dually for ac↑.)

Lemma 7.1.3. The rule aw↓ permutes under the rules ai↓, s and m. Dually,
the rule aw↑ permutes over the rules ai↑, s and m.

Proof. Similar to the proof of Lemma 7.1.2.

We now turn to the decomposition results.

7.2 Separating Identity and Cut

Given that in system SKS identity is a rule and not an axiom as in the
sequent calculus, a natural question to ask is whether the applications of
the identity rule can be restricted to the top of a derivation. For proofs,
this question is already answered positively by the semantic cut elimination
argument, Theorem 2.4.8 on page 22. It turns out that it is also true for
derivations in general. Because of the duality between ai↓ and ai↑ we can
also push the cuts to the bottom of a derivation. While this can be obtained
in the sequent calculus (by using cut elimination), it can not be done with
a simple permutation argument as we do.

7.2. SEPARATING IDENTITY AND CUT 67

The following rules are called super switch and super co-switch:

S{T{R}}
ss↓

S [R,T{f}]
and

S(R,T{t})
ss↑

S{T{R}} .

Lemma 7.2.1. The rule ss↓ is derivable for {s}. Dually, the rule ss↑ is deriv-
able for {s}.

Proof. Given an instance

S(R,T{t})
ss↑

S{T{R}} ,

we show by structural induction on T{ } how to replace it by switches. The
proof for ss↓ is dual.

1. T{ } is empty. Then the given instance can be replaced by an instance
of the equivalence rule.

2. T{ } = [U, V { }]. Apply the induction hypothesis on

S(R, [U, V {t}])
s
S [U, (R,V {t})]

ss↑
S [U, V {R}] .

3. T{ } = (U, V { }). Apply the induction hypothesis on

S(R, (U, V {t}))
=

S(U,R, V {t})
ss↑ .

S(U, V {R})

We have already seen the shallow atomic cut in the previous chapter. Now
we also consider a shallow identity and we suffix an s to the name of the rule
to denote that it is shallow:

S
ais↓

(S, [a, ā])
and

[S, (a, ā)]
ais↑

S

are called shallow atomic identity and shallow atomic cut, respectively.

Lemma 7.2.2. The rule ai↓ is derivable for {ais↓, s}. Dually, the rule ai↑ is
derivable for {ais↑, s}.

68 CHAPTER 7. NORMAL FORMS

Proof. An instance of ai↓ can be replaced by an instance of ais↓ followed by
an instance of ss↑, as follows:

S{t}
ais↓

(S{t}, [a, ā])
ss↑

S [a, ā]

.

The rule ss↑ can in turn be replaced by a derivation of switches by Lemma
7.2.1. (And dually for ai↑.)

Theorem 7.2.3.

For every derivation
T

R
SKS there is a derivation

T

V
{ai↓}

U
SKS \{ai↓,ai↑}

R
{ai↑}

.

Proof. We replace atomic identities by shallow atomic identities and switches
using Lemma 7.2.2 and do the same for the cuts. The rule ais↓ trivially per-
mutes over every rule in SKS, since its premise is just a schematic formula.
Dually, the rule ais↑ trivially permutes under every rule in SKS. Instances
of ais↓ and ais↑ are instances of ai↓ and ai↑, respectively.

7.3 Separating Contraction

Contraction allows the repeated use of a formula in a proof by allowing us
to copy it at will. It should be possible to copy everything needed in the
beginning, and then go on with the proof without ever having to copy again.
This intuition is made precise by the following theorem and holds for system
SKS. There is no such result for the sequent calculus as we will see in 7.7.
There are sequent systems for classical propositional logic that do not have
an explicit contraction rule, however, since they involve context sharing,
contraction is built into the logical rules and is used throughout the proof.

Theorem 7.3.1.

For every proof
S

KS there is a proof S′
KS\{ac↓}

S
{ac↓}

.

Proof. Using Lemma 7.1.2, permute down all instances of ac↓, starting with
the bottommost.

7.3. SEPARATING CONTRACTION 69

This result is extended to the symmetric system as follows:

Theorem 7.3.2.

For every derivation
T

R
SKS there is a derivation

T

V
{ac↑}

U
SKS \{ac↓,ac↑}

R
{ac↓}

.

Proof. Consider the following derivations that can be obtained:

T

R

SKS
1�

t
i↓

[T̄ , T]

[T̄ , R]

SKS

2�
t

[T̄ , R]

KS 3�

(T, t)

(T, [T̄ , R])
s

[R, (T, T̄)]
i↑

R

KS

4�

(T, t)

[R′, (T, T̄ ′)]

KS\{ac↓}

[R′, (T, T̄)]
i↑

R′

{ac↓}

R

{ac↓}

.

1. Put the derivation into the context [T̄ , { }]. On top of the resulting
derivation, apply an i↓ to obtain a proof.

2. Eliminate all cuts.

3. Put the proof into the context (T, { }). At the bottom of the resulting
derivation, apply a switch and a cut to obtain a derivation from T to
R.

4. All instances of ac↓ are permuted down as far as possible by using
Lemma 7.1.2. Note that there are just two kinds of ac↓ instances:
those that duplicate atoms from R and those that duplicate atoms
from T̄ ; there are none that duplicate atoms from T . The first kind,
starting with the bottom-most instance, can be permuted down all the
way to the bottom of the derivation. The second kind, also starting
with the bottom-most instance, can be permuted down until they meet
the cut.

Now, starting with the bottom-most ac↓ that is above the cut, we apply the
transformation

S(U{a}, Ū [ā, ā])
ac↓

S(U{a}, Ū{ā})
i↑ �

S{f}

S(U{a}, Ū [ā, ā])
ac↑

S(U(a, a), Ū [ā, ā])
i↑

S{f}

70 CHAPTER 7. NORMAL FORMS

and permute the resulting instance of ac↑ all the way up to the top of the
derivation. This is possible because no rule in the derivation above changes
T . Proceed inductively with the remaining instances of ac↓ above the cut.
The resulting derivation has the desired shape.

7.4 Separating Weakening

In the sequent calculus, one usually can push all the instances of weakening
up to the top of the proof or, to the same effect, build weakening into the
identity axiom:

A,Φ � A,Ψ .

The same lazy way of applying weakening can be done in system SKS, cf.
Theorem 2.4.8. However, while a proof in which all weakenings occur at
the top is certainly more ‘normal’ than a proof in which weakenings are
scattered all over, this is hardly an interesting normal form. In system SKS
something more interesting can be done: applying weakening in an eager
way.

Theorem 7.4.1.

For every proof
S

KS there is a proof S′
KS\{aw↓}

S
{aw↓}

.

Proof. Permute down all instances of aw↓, starting with the bottommost.
This is done by using Lemma 7.1.3 and the following transformation:

S [a, f]
aw↓

S [a, a]
ac↓

S{a}
� S [a, f]

= .
S{a}

Weakening loses information: when deducing a ∨ b from a, the information
that a holds is lost. Given a proof of a certain statement, do the weakenings
lose information that we would like to keep? Can we obtain a proof of a
stronger statement by removing them? The theorem above gives an affirma-
tive answer to that question: given a proof of S, it exhibits a weakening-free
proof of a formula S′, from which S trivially follows by weakenings.

Notation 7.4.2. A derivation
T

R
{ρ} of length n is denoted by

T
ρn .

R

7.4. SEPARATING WEAKENING 71

The result given above extends from proofs to arbitrary derivations:

Theorem 7.4.3.

For every derivation
T

R
SKS there is a derivation

T

V
{aw↑}

U
SKS \{aw↓,aw↑}

R
{aw↓}

.

Proof. There is an algorithm that produces a derivation of the desired shape.
It consists of two procedures: 1) pushing up all instances of aw↑ and 2)
pushing down all instances of aw↓. Those two procedures are repeated al-
ternatingly until the derivation has the desired shape. An instance of aw↑
that is pushed up can turn into an instance of aw↓ when meeting an instance
of ai↓, and the dual case can also happen.

In the following, the process of pushing up instances of aw↑ is shown, the
process of pushing down instances of aw↓ is dual.

An instance of aw↑ is a special case of a derivation consisting of n instances
of aw↑ and is moved up as such, starting with the topmost. In addition to
the cases treated in Lemma 7.1.3 there are the following cases:

S′{a}
ac↑

S′(a, a)
aw↑n �

S(t, a)

S′{a}
aw↑n−1

S{a}
=

S(t, a)

S′ [a, a]
ac↓

S′{a}
aw↑n �

S{t}

S′ [a, a]
aw↑n+1

S [t, t]
=

S{t}

S′{f}
aw↓

S′{a}
aw↑n �

S{t}

S′{f}
aw↑n−1

S{f}
=

S([t, t], f)
s
S [t, (t, f)]

=
S{t}

72 CHAPTER 7. NORMAL FORMS

S′{t}
ai↓

S′ [a, ā]
aw↑n �

S [t, ā]

S′{t}
aw↑n−1

S{t}
=

S [t, f]
aw↓

S [t, ā]

The process of applying these transformation clearly terminates since the
length of the derivation above the topmost instance of aw↑ decreases with
each step. The algorithm of alternatingly applying the two dual procedures
terminates as well since each run of a procedure that does not produce the
desired shape strictly decreases the combined number of instances of ai↓ and
ai↑.

7.5 Separating all Atomic Rules

Decomposition results can be applied consecutively. Here, all rules that
deal with atoms, namely ai↓, ac↓, aw↓ and their duals, are separated from
the rules that deal with the connectives, namely s and m:

Theorem 7.5.1. For every derivation
T

R
SKS there is a derivation

T

T1

{ac↑}

T2

{aw↑}

T3

{ai↓}

R3

{s,m}

R2

{ai↑}

R1

{aw↓}

R
{ac↓}

.

Proof. We first push contractions to the outside, using Theorem 7.3.2. In
the contraction-free part of the obtained derivation, we push weakening to
the outside, using the procedure from the proof of Theorem 7.4.3, which
does not introduce new instances of contraction. In the contraction- and
weakening-free part of the resulting derivation we then separate out identity
and cut by applying the procedure from the proof of Theorem 7.2.3, which
neither introduces new contractions nor weakenings.

7.6. PREDICATE LOGIC 73

7.6 Predicate Logic

All decomposition results we have seen so far for the propositional system
SKS extend to the predicate logic system SKSq in a straightforward way.

As in the propositional case, atomic identity and cut can be reduced to their
shallow versions using the super switch rules. In the predicate case the rules
shallow atomic identity and shallow atomic cut are as follows:

S
ais↓

(S,∀[a, ā])
and

[S,∃(a, ā)]
ais↑

S
,

where ∀ and ∃ denote sequences of quantifiers that universally close [a, ā]
and existentially close (a, ā), respectively.

The super switch rules for predicate logic,

S{T{R}}
ss↓

S [R,T{f}]
and

S(R,T{t})
ss↑

S{T{R}} ,

carry a proviso: quantifiers in T do not bind variables that occur freely in
R. This is not a restriction because bound variables can always be renamed
such that the proviso is fulfilled.

Lemma 7.6.1. The rule ss↓ is derivable for {s, n↓, u↓}. Dually, the rule ss↑
is derivable for {s, n↑, u↑}.

Proof. The proof is an extension of the proof of corresponding lemma for
propositional logic (Lemma 7.2.1 on page 67). I just show the two cases that
have to be considered in addition to the proof in the propositional case. Note
that the proviso on ss↑ ensures that x does not occur freely in R.

1. T{ } = ∀xU{ }. Apply the induction hypothesis on

S(R,∀xU{t})
=

S{∀x(R,∀xU{t})}
n↑

S{∀x(R,U{t})}
ss↑

S{∀xU{R}} .

2. T{ } = ∃xU{ }. Apply the induction hypothesis on

S(R,∃xU{t})
=

S(∀xR,∃xU{t})
u↑

S{∃x(R,U{t})}
ss↑

S{∃xU{R}} .

74 CHAPTER 7. NORMAL FORMS

Lemma 7.6.2. The rule ai↓ is derivable for {ais↓, s, n↑, u↑}. Dually, the rule
ai↑ is derivable for {ais↑, s, n↓, u↓}.

Proof.

An instance of
S{t}

ai↓
S [a, ā]

is replaced by

S{t}
ais↓

(S{t},∀[a, ā])
ss↑

S{∀[a, ā]}
n↑n

S [a, ā]

,

where n is the number of free variables in a. (And dually for ai↑.)

Theorem 7.6.3 (Decomposition in Predicate Logic). All decomposition theo-
rems also hold in the case of predicate logic, i.e. with SKS replaced by SKSq
and KS replaced by KSq. In Theorem 7.5.1, {s,m} has to be extended by the
quantifier rules, i.e. {u↓, u↑, l1↓, l1↑, l2↓, l2↑, n↓, n↑}.

Proof. Identity and cut are separated as in the propositional case, using
Lemma 7.6.2 instead of Lemma 7.2.2.

Contraction is separated as in the propositional case, using the proof of
Theorem 7.3.2. The only difference is in step four, where instances of ac↓
have to be permuted under instances of rules from KSq \KS. None of those
rules except for n↓ changes atoms, so ac↓ trivially permutes under those
instances. It also easily permutes under instances of n↓:

S{R[a, a] [x/τ]}
ac↓

S{R{a}[x/τ]}
n↓ �

S{∃xR{a}}

S{R[a, a] [x/τ]}
n↓

S{∃xR[a, a]}
ac↓ .

S{∃xR{a}}

Weakening is separated as in the propositional case. When moved over n↓
and n↑, derivations of weakenings will contain weakenings on different atoms
(with the same predicate symbol but differently instantiated):

S′{R′{a}[x/τ]}
n↓

S′{∃xR′{a}}
aw↑n �

S{∃xR{t}}

S′{R′{a}[x/τ]}
aw↑n

S{R{t}[x/τ]}
n↓

S{∃xR{t}}

7.7. DECOMPOSITION AND THE SEQUENT CALCULUS 75

7.7 Decomposition and the Sequent Calculus

Decomposition, in a limited form, also exists in the sequent calculus: the
separation of identity and cut as in Theorem 7.2.3, for example. The pos-
sibility of restricting weakening to the leaves of a sequent calculus proof is
also a decomposition into a lower phase without weakening and an upper
phase with weakening.

Clearly, weakening can not be restricted to the bottom (i.e. the root) of a
sequent calculus proof, as deep inference allows us in Theorem 7.4.1. Just
consider the valid sequent

� (A ∨ Ā) ∨ B ,

for which there is no proof in GS1p with weakening restricted to the bottom.

Contraction can of course easily be restricted to the bottom of a sequent
calculus proof in systems with additive context treatment, such as system
G3cp, simply because in such systems contraction is admissible. However,
this has nothing to do with decomposition, since contraction has just moved
into the context management of the additive rules. Anyway, this trick does
not work in the predicate case: moving to additive context treatment does
not make contraction admissible.

The separation of contraction in Theorem 7.3.1 is such that in the upper
phase no duplication of formulas takes place. To achieve this in sequent
systems, one would have to restrict contraction to the bottom of a proof
with multiplicative context treatment. This is impossible:

Proposition 7.7.1. There is a valid sequent that has no proof in multiplicative
GS1p in which all contractions are at the bottom.

Proof. Consider the following sequent:

� a ∧ a, ā ∧ ā . (7.1)

It suffices to show that, for any number of occurrences of the formulas a ∧ a
and ā ∧ ā, the sequent

� a ∧ a, . . . , a ∧ a, ā ∧ ā, . . . , ā ∧ ā (7.2)

is not provable in GS1p without contraction. Since the connective ∨ does
not occur in this sequent, the only rules that can appear in contraction-free
derivations with this endsequent are Ax,R∧ and RW. The only formulas
that can appear in such derivations are a ∧ a, ā ∧ ā, a and ā. Consequently,
the only formulas that can appear in an axiom are the atoms a and ā. A

76 CHAPTER 7. NORMAL FORMS

leaf can thus be closed with an axiom only if it contains exactly two atoms
(as opposed to two non-atomic formulas).

We prove by induction on the size of the derivation that each such derivation
has a leaf which contains at most one atom. The base case is trivial: the
sequent 7.2 contains no atom. For the inductive case, consider a derivation
∆. Remove a rule instance ρ from the top of ∆, to obtain a derivation
∆′. Let l be the leaf with the conclusion of ρ. By inductive hypothesis, ∆′

has a leaf with at most one atom. Assume that this leaf is l, otherwise the
inductive step is trivial. The rule instance ρ can not be an axiom, because
there is at most one atom in l. If ρ is a weakening then the premise of ρ
contains at most one atom. If ρ is an instance of R∧ then the only atom
that may occur in the conclusion goes to one premise. The other premise
contains at most one (i.e. exactly one) atom.

Similarly to the argument why contraction can not be restricted to atomic
form in the sequent calculus (Proposition 4.3.1), the above works not only
for system GS1p but for a wide range of sequent systems, as long as the
R∧-rule is multiplicative.

7.8 Interpolation

In system SKS there are rules that, when going up in a derivation, introduce
new atoms: the cut rule and the co-weakening rule. An interesting question
to ask is whether one can restrict those rules such that they only introduce
atoms that appear in the premise of the derivation. Cut elimination an-
swers this question in the case of proofs, which are special derivations. If
the premise of a derivation is the constant t, then cut and co-weakening
are superfluous—no ‘detours’ are necessary. What about derivations that
are not proofs? Further, in the case of derivations (as opposed to proofs)
we have a symmetry between premise and conclusion. This suggests to
symmetricise the above question: Can we restrict cut and co-weakening to
atoms appearing in the premise and at the same time restrict identity and
weakening to atoms appearing in the conclusion? Guglielmi stated this as a
conjecture in [20].

In this section I will give a decomposition theorem for derivations in system
SKS, which yields as immediate corollaries not only this conjecture (and
thus cut elimination) but also (propositional) Craig interpolation [10]. The
proof will use semantic means.

Definition 7.8.1. A formula is in disjunctive normal form if it is a disjunction
of conjunctions of atoms. Given a formula R, a formula in disjunctive normal
form that is semantically equivalent to R is denoted by dnf (R). A formula is

7.8. INTERPOLATION 77

in canonical disjunctive normal form if it is in disjunctive normal form and
1) each conjunction occurs at most once and 2) each propositional variable
occurring in the formula occurs exactly once in each conjunction, either
negated or not negated, but not both. Given a formula R, a formula in
canonical disjunctive normal form that is semantically equivalent to R will
be denoted by cdnf (R).

Example 7.8.2. The formula (a, [b, c]) is not in disjunctive normal form, but
the semantically equivalent formula [(a, b), (a, c)] is. However, it is not in
canonical disjunctive normal form, while the semantically equivalent formula
[(a, b, c), (a, b, c̄), (a, b̄, c)] is.

Lemma 7.8.3. For every derivation
P

Q

SKS there is a derivation of the fol-

lowing shape:

P

dnf (P)

{c↑,s}

cdnf (P)

∆1

cdnf (Q)

{w↓}

dnf (Q)

∆2

Q

{c↓,m}

with ∆1 =

dnf (P)

P1

{aw↑}

P2

{c↓}

P3

{aw↑,ai↑}

cdnf (P)

{c↑,ai↓,s}

and ∆2 =

cdnf (Q)

Q3

{c↓,aw↑}

Q2

{w↓}

Q1

{w↓}

dnf (Q)

{ac↑}

.

Proof. A disjunctive normal form can be derived from P , and Q can be
derived from one of its disjunctive normal forms, respectively, by using re-
peatedly the following derivations:

S(R, [T,U])
c↑

S(R,R, [T,U])
s2

S [(R,T), (R,U)]

and

S [(R,T), (R,U)]
m

S([R,R], [T,U])
c↓

S(R, [T,U])

.

Since P implies Q, all successful valuations of P are successful on Q. A
successful valuation of a formula (i.e. a line in the truth table that satisfies
the formula) corresponds to a conjunction in a canonical disjunctive form
of the formula. To derive cdnf (Q) from cdnf (P) it thus suffices to remove
conjunctions from cdnf (Q) which can be done by applying the w↓ rule.

78 CHAPTER 7. NORMAL FORMS

What remains to be shown is the existence of ∆1 and ∆2, i.e. how to derive
a canonical disjunctive normal form from a disjunctive normal form and
vice versa. This is done in four steps, in ∆1 seen top-down and in ∆2 seen
bottom-up:

1. In each conjunction, for each atom, all occurrences except for one are
removed.

[S, (a1, a1, a2, . . . , an)]
aw↑

[S, (a1, a2, . . . , an)]

[S, (a1, a2, . . . , an)]
ac↑

[S, (a1, a1, a2, . . . , an)]

2. For each conjunction, all occurrences of it except for one are removed.

[S, (a1, . . . , an), (a1, . . . , an)]
c↓

[S, (a1, . . . , an)]

[S, (a1, . . . , an)]
w↓

[S, (a1, . . . , an), (a1, . . . , an)]

3. All unsatisfiable conjunctions, i.e. those that contain an atom together
with its dual, are removed.

[S, (a, ā, b1, . . . , bn)]
w↑

[S, (a, ā)]
ai↑

S

S
w↓

[S, (a, ā, b1, . . . , bn)]

4. For each propositional variable p that occurs in P or Q, and for each
conjunction (a1, . . . , an), in which p does not occur, remove this con-
junction and replace it by [(a1, . . . , an, p), (a1, . . . , an, p̄)]. In ∆1 we
have

[S, (a1, . . . , an)]
c↑

[S, (a1, . . . , an, a1, . . . , an)]
ai↓

[S, (a1, . . . , an, a1, . . . , an, [p, p̄])]
s2

[S, (p, a1, . . . , an), (p̄, a1, . . . , an)]

,

and in ∆2 we have

[S, (p, a1, . . . , an), (p̄, a1, . . . , an)]
aw↑2

[S, (a1, . . . , an), (a1, . . . , an)]
c↓

[S, (a1, . . . , an)]

.

7.8. INTERPOLATION 79

Using the lemma above, a derivation is separated into two phases: the top
one, with rules that do not introduce new atoms going down, and the bottom
one, with rules that do not introduce new atoms going up. Consequently,
the formula in between contains only atoms that occur both in the premise
and in the conclusion of the derivation and is thus an interpolant. This
decomposition theorem can be seen as the symmetric closure of cut elim-
ination: not only are cuts pushed up, but also their duals, identities, are
pushed down.

Theorem 7.8.4 (Interpolation).

For every derivation
P

Q
SKS there is a derivation

P

V
SKS\{ai↓,aw↓}

Q
SKS\{ai↑,aw↑}

.

Proof. Decompose the given proof by the above lemma. The derivation ob-
tained, with V = P3, almost has the desired shape: the only problem are
instances of aw↑ below P3. They can be permuted up using the transfor-
mations given in the proof of Theorem 7.4.3. These transformations do not
introduce new instances of cut or identity.

Corollary 7.8.5 (Craig Interpolation). For all formulas P and Q, if P implies
Q then there is a formula V such that P implies V , V implies Q and V
contains only propositional variables that occur in both P and Q.

Proof. The derivation from P to V which exists by the interpolation theorem
does not introduce new propositional variables when seen top-down. Neither
does the derivation from V to Q when seen bottom-up.

Corollary 7.8.6 (Cut Elimination).

For each proof
Q

SKS there is a proof
Q

SKS\{ai↑} .

Proof. Applying the interpolation theorem on a given proof of Q, we get a
proof

t

V
SKS\{ai↓,aw↓}

Q
SKS\{ai↑,aw↑}

In the derivation below V there are no cuts. Assume that there is a cut in
the derivation above V . Since there is no rule that, going up, could remove
the atoms introduced by a cut, these atoms have to occur in the premise of

80 CHAPTER 7. NORMAL FORMS

the proof. But the premise of a proof is the constant t, so it cannot contain
atoms. Thus the proof is cut-free.

Of course, Craig interpolation is easily obtained from cut elimination in the
sequent calculus, so it comes as no surprise that a theorem that easily yields
cut elimination also yields Craig interpolation with relative ease. However,
what we have here is not just easy, it is immediate: cut elimination and Craig
interpolation can immediately be read off of an easy-to-state normal form
of derivations. So the given interpolation theorem is a simple generalisation
of both: cut elimination as well as Craig interpolation.

Chapter Summary

We have seen that deep inference allows permutations that can not be ob-
served in the sequent calculus, which leads to new normal forms for deriva-
tions. Cut and identity, weakening and co-weakening, as well as contraction
and co-contraction can all be separated from the other rules. These normal
forms hold both in propositional and in predicate logic. Except for the first,
they are impossible in the sequent calculus.

One normal form, for propositional logic, is especially interesting since it
generalises both cut elimination and Craig interpolation.

Chapter 8

Conclusion

We have seen deductive systems for classical propositional and predicate
logic in the calculus of structures. They are related to sequent systems,
but their rules apply deep inside formulas, and derivations enjoy a top-
down symmetry which allows to dualise them. Just like sequent systems,
they have a cut rule which is admissible, so they in principle admit a proof
theory similar to sequent systems.

In contrast to sequent systems, they allow to reduce the cut, weakening and
contraction to atomic form. This leads to local rules, i.e. rules that do not
require the inspection of expressions of unbounded size. For propositional
logic, I presented system SKS, which is local, i.e. contains only local rules.
For predicate logic I presented system SKSq which is local except for the
treatment of variables.

The reducibility of cut to atomic form together with deep inference also
allows to obtain finitely generating systems, that is, systems in which each
rule has only a finite choice of premises once the conclusion is given. This
can be done in a very simple manner, cut elimination is not needed for
obtaining finite choice.

Another consequence of the reducibility of cut to atomic form is a cut elim-
ination procedure which is much simpler than those for sequent systems.
The way in which proofs are substituted resembles normalisation in natu-
ral deduction, which suggests a computational interpretation in the proof
normalisation as computation paradigm. Since the systems have an explicit
admissible cut rule, they are in principle suitable for proof search as compu-
tation. So each of the systems seems to be a good candidate for developing
both the proof search as well as the proof normalisation paradigm together
in the same system.

The freedom in applying inference rules in the calculus of structures allows
permutations that can not be observed in the sequent calculus. This leads to

81

82 CHAPTER 8. CONCLUSION

new normal forms for derivations, as shown in the decomposition theorems.
One of these normal forms is especially interesting since it generalises both
cut elimination and Craig interpolation.

These results show that deep inference and top-down symmetry allow for
a more refined analysis of proofs than the sequent calculus. I think the
development of a proof theory based on these two concepts is promising. I
would therefore like to show in the following some open problems which, I
believe, are worthy of further research.

Cut Elimination for Predicate Logic

A natural question is whether the cut elimination procedure for system SKS
scales to more expressive cases, for example to predicate logic. At this
point, the proof of cut admissibility for SKSq relies on cut admissibility in
the sequent calculus. The cut elimination procedure presented in Chapter
6 does not appear to easily scale to system SKSq. The problem, which
does not occur in shallow inference systems like sequent calculus or natural
deduction, are existential quantifiers in the context of a cut which bind
variables both in a and ā. The procedure easily extends to closed atomic
cuts, where the cut formula is an atom prefixed by quantifiers that bind
all its variables. The question then is how to reduce general cuts to closed
atomic cuts. If this problem were solved, then the procedure would scale to
predicate logic. Hopefully this will lead to a cut elimination procedure for
predicate logic which is simpler than other cut elimination procedures, as
happened for propositional logic.

Complexity of Cut Elimination

The procedure given in Chaper 6 involves a massive increase in the size of the
proof, since for each cut the proof above it is duplicated. Another technique,
splitting [22], can avoid much of this duplication by separating the context
of the cut into two formulas and the proof above the cut into two proofs:
one for each cut atom together with the corresponding part of the context.
It will be interesting to study the complexity of such a procedure and how
it relates to the one presented here and the ones for sequent systems.

Intuitionistic Logic

Which new proof-theoretical properties can be observed for intuitionistic
logic by using deep inference and symmetry? Even though neither the De

83

Morgan laws nor the law of the contrapositive hold intuitionistically, there
are systems for intuitionistic logic which enjoy the same symmetry as system
SKS [5, 11]. This symmetry allows to reduce the cut to atomic form just like
in SKS. The current question is whether there is a local system, i.e. whether
contraction is reducible to atomic form, and whether the cut elimination
procedure for SKS can be adapted to these systems.

Computational Interpretation of Cut Elimination

For proof normalisation as computation, natural questions to be considered
are strong normalisation and confluence of the cut elimination procedure
from Chapter 6—when imposing as little strategy as possible. Similarly to
[30], a term calculus should be developed and its computational meaning be
made precise. Intuitionistic logic is a more familiar setting for this, so the
possibility of treating intuitionistic logic should be explored first.

Normal Forms

A decomposition theorem that has been proved for two other systems [24, 41]
in the calculus of structures and led to cut elimination, is the separation of
the core and the non-core fragment. So far, all the systems in the calculus
of structures allow for an easy reduction of both cut and identity to atomic
form by means of rules that can be obtained in a uniform way. Those rules
are called the core fragment. In SKS, the core consists of one single rule:
the switch. The core of SKSq, in addition to the switch rule, also contains
the rules u↓ and u↑. All rules that are not in the core and are not identity or
cut are called non-core. The main problem in separating core from non-core
is separating switch from medial.

Conjecture (Separation core – non-core).

For every derivation
T

R
SKS there is a derivation

T

T ′
non-core

T ′′
{ai↓}

R′′
core

R′
{ai↑}

R
non-core

.

A cut elimination procedure that is based on permuting up instances of the
cut would be easy to obtain, could we rely on this conjecture. Then all the

84 CHAPTER 8. CONCLUSION

problematic rules that could stand in the way of the cut can be moved either
below all the cuts or to the top of the proof, rendering them trivial, since
their premise is the unit t. Cut elimination is thus an easy consequence
of such a decomposition theorem. Straßburger suggests that decomposition
theorems of this kind and cut elimination are closely connected [40].

Of course, one can imagine many different decomposition theorems, corre-
sponding to different orders in which certain inference rules are applied. A
decomposition theorem implies a normal form for derivations and thus a no-
tion of equivalence of derivations. It is a well-known problem in proof theory
that most formalisms distinguish between proofs that only differ by some
trivial permutation of rule instances. The equivalence of proofs in formal
systems has little to do with the intuitive notion of equivalence of proofs
that mathematicians have. An interesting question is whether there is a
decomposition such that two derivations have the same normal form exactly
when the two derivations are intuitively equivalent. A starting point could
be [23].

In addition to proving new decomposition theorems, new ways of proving
existing decomposition theorems should be studied. The proof of the separa-
tion of contraction (Theorem 7.3.2), for instance, relies on the admissibility
of the cut. It should be provable directly, i.e. without using cut admissibility,
just by very natural permutations. The difficulty is in proving termination of
the process of bouncing contractions up and down between cuts and iden-
tities, as happens in [42]. Another example is the interpolation theorem,
which relies on Lemma 7.8.3, and thus on semantics. A syntactic procedure
that just uses permutation of rules would be desirable, especially the bounds
that it puts on the size of the interpolant.

Proof Search

The greater freedom in applying inference rules that is given by deep infer-
ence is a mixed blessing. On one hand it in principle allows to find shorter
proofs than in the sequent calculus. On the other hand it implies a greater
nondeterminism in proof search. It will be interesting to see whether it
is possible to restrict this nondeterminism by finding a suitable notion of
goal-driven proof like the notion of uniform proofs by Miller et al. [29]. De-
composition theorems restrict the choice of which inference rules to apply. A
splitting theorem [22] restricts the choice of where to apply inference rules.
In a goal-driven proof the application of certain inference rules could be
restricted to the goal until there is no other choice besides applying them
to the program. It is conceivable to develop various notions of goal-driven
proof based on a combination of splitting and decomposition.

85

Relation to other Formalisms

The calculus of structures identifies structural and logical level as found
in Gentzen’s sequent calculus. Belnap’s Display Calculus [2] can be seen
as strengthening the structural level to match the logical level. It will be
interesting to see the connection between the two. It would be especially
interesting to see whether easily checkable syntactic criteria for cut elimina-
tion, as they exist for the Display Calculus, can be found for the calculus of
structures.

The relation of the presented systems to the connection method [45] is an-
other interesting subject. The finer granularity of inference rules in the
calculus of structures with respect to the sequent calculus would presum-
ably allow for a closer correspondence between derivations in the calculus of
structures and connection proofs than between sequent calculus derivations
and connection proofs. The connection method also has a certain symmetry
which might help in establishing a correspondence.

86 CHAPTER 8. CONCLUSION

Bibliography

[1] Alan Ross Anderson, Nuel D. Belnap, and J. Michael Dunn. Entail-
ment: The Logic of Relevance and Necessity, volume 1. Princeton Uni-
versity Press, 1975.

[2] Nuel D. Belnap, Jr. Display logic. Journal of Philosophical Logic,
11:375–417, 1982.

[3] Kai Brünnler. Locality for classical logic. Technical Report
WV-02-15, Dresden University of Technology, 2002. Available at
http://www.wv.inf.tu-dresden.de/˜kai/LocalityClassical.pdf.

[4] Kai Brünnler. Atomic cut elimination for classical logic. In M. Baaz
and J. A. Makowsky, editors, CSL 2003, volume 2803 of Lecture Notes
in Computer Science, pages 86–97. Springer-Verlag, 2003.

[5] Kai Brünnler. Minimal logic in the calculus of structures, 2003. Note.
On the web at: http://www.ki.inf.tu-dresden.de/˜kai/minimal.html.

[6] Kai Brünnler. Two restrictions on contraction. Logic Journal of the
IGPL, 11(5):525–529, 2003.

[7] Kai Brünnler and Alessio Guglielmi. A first order system with finite
choice of premises. In Hendricks et al., editor, First-Order Logic Revis-
ited. Logos Verlag, 2004. To appear.

[8] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical
logic. In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume
2250 of Lecture Notes in Artificial Intelligence, pages 347–361. Springer-
Verlag, 2001.

[9] Paola Bruscoli. A purely logical account of sequentiality in proof search.
In Peter J. Stuckey, editor, Logic Programming, 18th International Con-
ference, volume 2401 of Lecture Notes in Artificial Intelligence, pages
302–316. Springer-Verlag, 2002.

[10] W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen
theorem. Journal of Symbolic Logic, 22:250–268, 1957.

87

88 BIBLIOGRAPHY

[11] Philippe de Groote. Personal communication, 2001.

[12] Pietro Di Gianantonio. Structures in cyclic linear logic. Technical
report, Università di Udine, 2003.

[13] Kosta Došen and Zoran Petrić. Bicartesian coherence. Studia Logica,
71(3):331–353, 2002.

[14] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic.
The Journal of Symbolic Logic, (57):795–807, 1992.

[15] Jean Gallier. Constructive logics. Part I: A tutorial on proof systems
and typed λ-calculi. Theoretical Computer Science, 110:249–339, 1993.

[16] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-
Holland Publishing Co., Amsterdam, 1969.

[17] Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupures de l’arithmétique d’ordre supérieur. PhD thesis, Université
Paris VII, 1972.

[18] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[19] Alessio Guglielmi. The calculus of structures website. Available from
http://www.ki.inf.tu-dresden.de/˜guglielm/Research/.

[20] Alessio Guglielmi. Goodness, perfection and miracles. On the web at:
http://www.ki.inf.tu-dresden.de/˜guglielm/Research/Notes/AG1.pdf,
2002.

[21] Alessio Guglielmi. Recipe. Manuscript. http://www.wv.inf.tu-
dresden.de/˜guglielm/Research/Notes/AG2.pdf, 2002.

[22] Alessio Guglielmi. A system of interaction and structure. Technical
Report WV-02-10, Technische Universität Dresden, 2002. Available at
http://www.wv.inf.tu-dresden.de/˜guglielm/Research/Gug/Gug.pdf.

[23] Alessio Guglielmi. Normalisation without cut elimination.
Manuscript. Available on the web at http://www.wv.inf.tu-
dresden.de/˜guglielm/Research/Notes/AG2.pdf, 2003.

[24] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and
MELL in the calculus of structures. In L. Fribourg, editor, CSL
2001, volume 2142 of Lecture Notes in Computer Science, pages 54–
68. Springer-Verlag, 2001.

BIBLIOGRAPHY 89

[25] Alessio Guglielmi and Lutz Straßburger. A non-commutative exten-
sion of MELL. In Matthias Baaz and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, LPAR 2002,
volume 2514 of LNAI, pages 231–246. Springer-Verlag, 2002.

[26] J. Herbrand. Recherches sur la théorie de la démonstration. PhD thesis,
Université de Paris, 1930.

[27] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1993.

[28] Dale Miller. lambda Prolog: An introduction to the language and its
logic. Draft of book in circulation since Summer 1995.

[29] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125–157, 1991.

[30] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natu-
ral deduction. In LPAR 1992, volume 624 of Lecture Notes in Computer
Science, pages 190–201. Springer-Verlag, 1992.

[31] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched
Implications, volume 26 of Applied Logic Series. Kluwer Academic Pub-
lishers, 2002.

[32] Greg Restall. An Introduction to Substructural Logics. Routledge, 2000.

[33] John Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12:23–41, 1965.

[34] Kurt Schütte. Schlussweisen-Kalküle der Prädikatenlogik. Mathema-
tische Annalen, 122:47–65, 1950.

[35] Kurt Schütte. Beweistheorie. Springer-Verlag, 1960.

[36] Kurt Schütte. Proof Theory. Springer-Verlag, 1977.

[37] Raymond M. Smullyan. Analytic cut. The Journal of Symbolic Logic,
33:560–564, 1968.

[38] Raymond M. Smullyan. First-Order Logic. Springer-Verlag, Berlin,
1968.

[39] Charles Stewart and Phiniki Stouppa. A systematic proof theory for
several modal logics. Technical Report WV-03-08, Technische Univer-
sität Dresden, 2003. Submitted.

[40] Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus
of Structures. PhD thesis, Technische Universität Dresden, 2003.

90 BIBLIOGRAPHY

[41] Lutz Straßburger. A local system for linear logic. In Matthias Baaz
and Andrei Voronkov, editors, Logic for Programming, Artificial In-
telligence, and Reasoning, LPAR 2002, volume 2514 of LNAI, pages
388–402. Springer-Verlag, 2002.

[42] Lutz Straßburger. MELL in the Calculus of Structures. Theoretical
Computer Science, 309(1–3):213–285, 2003.

[43] Alwen Fernanto Tiu. Properties of a Logical System in the Calculus of
Structures. Master’s thesis, Technische Universität Dresden, 2001.

[44] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory.
Cambridge University Press, 1996.

[45] W. Bibel. On matrices with connections. Journal of the Association
for Computing Machinery, 28(4):633–645, 1981.

[46] Philip Wadler. 19’th century logic and 21’st century programming lan-
guages. Dr Dobbs, December 2000.

Index

S{R}, 7
S [R,T], 7
{ } (empty context, or hole), 7
f (false), 7
λ-Prolog, 4
t (true), 7
S{ } (formula context), 7
(S1, . . . , Sh) (conjunction), 7
S̄ (negation), 7
[S1, . . . , Sh] (disjunction), 7

admissible, 21
asymmetry, 1
atom, 7, 25
atomic cut, 37
atomic identity, 36

backtracking, 41
bicartesian category, 37

calculus of structures, 2
co-, 11
co-weakening, 12
conclusion

of a derivation, 9
of an inference rule, 8

consistency, 50
context

of a rule instance, 9
contraction, 11
contractum, 9
contrapositive, 10
Craig interpolation, 65
cut elimination

procedure, 63

semantically, 22
via the sequent calculus, 21, 32

decomposition, 65
deep

inference rule, 8
derivable, 10
derivation, 9
distributed implementation, 41
down-rules, 12
dual

inference rule, 11
of a derivation, 13

duality, 10

empty context, 7
equivalence

of formulas, 25
of formulas, 7
strong, of systems, 21
weak, of systems, 21

equivalence rule, 10

finitely generating, 47
finitely generating atomic cut, 49
finitely generating atomic cut, 52
formula, 7, 25
formula context, 7
functional programming, 4

general, 11
Girard, Jean-Yves, 4
global, 35
Guglielmi, Alessio, 2, 42, 76

Herbrand’s Theorem, 4

91

92 INDEX

hole, 7

inference rule, 8
inference rule

ai↓ (atomic identity), 36
ai↑ (atomic cut), 37
aw↓ (atomic weakening), 39
aw↑ (atomic co-weakening), 39
c↓ (contraction), 11
c↑ (co-contraction), 12
fai↑ (finitely generating atomic cut),

49, 52
fn↓1 (finitely generating instanti-

ation), 53
fn↓2 (finitely generating instanti-

ation), 53
i↓ (identity), 11
i↑ (cut), 11
l1↓, 42
l1↑, 42
l2↓, 42
l2↑, 42
m (medial), 37
n↓ (instantiation), 27
n↑ (co-instantiation), 27
s (switch), 11
ss↓ (super switch), 67, 73
ss↑ (super co-switch), 67, 73
u↓, 27, 42
u↑, 42
w↓ (weakening), 11
w↑ (co-weakening), 12
vai↑, 52

infinitely generating, 47
interpolant, 78

local, 35, 41
logic programming, 4

medial, 37
Mid-Sequent Theorem, 65

natural deduction, 58
normal form

canonical disjunctive, 77

disjunctive, 76
negation, 7

permutation, 65
predicate symbol, 25
premise

of a derivation, 9
of an inference rule, 8

process algebras, 3
Prolog, 4
promotion rule, 35
proof, 10
proof nets, 3
proof normalisation as computation,

4
proof search as computation, 4
propositional variable, 7
Pym, David J., 3

redex, 9
refutation, 13
rewrite rule, 9

Schütte, Kurt, 3
sequents, 15
shallow

atomic cut, 62
atomic identity, 67, 73
inference rule, 8

splitting, 60
structures, 10
subformula, 7
subformula property, 22
super switch, 67
switch, 11
symmetric, 11
system, 9

GS1, 29
GS1p, 14
G3cp, 45
KSg, 21
KSgq, 32
SKS, 39
SKSg, 11
SKSgq, 27

INDEX 93

KSq, 45
KS, 40
SKSq, 44
FKS, 50
FKSq, 55

term, 25
Tiu, Alwen Fernanto, 37
translation function

.
G
, 18, 29

.
S
, 16, 29

up-rules, 12

vacuous quantifier, 26
variable, 25
variable renaming, 26
variable capture, 27

weakening, 11
eager and lazy, 70

	Abstract
	Acknowledgements
	Introduction
	Propositional Logic
	Basic Definitions
	A Deep Symmetric System
	Correspondence to the Sequent Calculus
	Cut Admissibility

	Predicate Logic
	Basic Definitions
	A Deep Symmetric System
	Correspondence to the Sequent Calculus
	Cut Admissibility

	Locality
	Propositional Logic
	Reducing Rules to Atomic Form
	A Local System for Propositional Logic

	Predicate Logic
	Reducing Rules to Atomic Form
	A Local System for Predicate Logic

	Locality and the Sequent Calculus

	Finite Choice
	Propositional Logic
	Eliminating Infinite Choice in Inference Rules
	A Finitely Generating System for Propositional Logic

	Predicate Logic
	Eliminating Infinite Choice in Inference Rules
	A Finitely Generating System for Predicate Logic

	Cut Elimination
	Motivation
	Cut Elimination in Sequent Calculus and Natural Deduction
	Cut Elimination in the Calculus of Structures
	The Cut Elimination Procedure

	Normal Forms
	Permutation of Rules
	Separating Identity and Cut
	Separating Contraction
	Separating Weakening
	Separating all Atomic Rules
	Predicate Logic
	Decomposition and the Sequent Calculus
	Interpolation

	Conclusion
	Bibliography
	Index

